Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635316

RESUMEN

Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully reveal rare variants and variants with clear associations with disease-related phenotypes. These studies have had a significant impact on how clinical genetic screens are interpreted and how patients are stratified for treatment. There are few, if any, computational methods for variants comparable to biological activity predictions. To address this gap, we developed a machine learning method that uses protein three-dimensional structures from AlphaFold to predict how a variant will influence changes to a gene's downstream biological pathways. We trained state-of-the-art machine learning classifiers to predict which protein regions will most likely impact transcriptional activities of two proto-oncogenes, nuclear factor erythroid 2 (NFE2L2)-related factor 2 (NRF2) and c-Myc. We have identified classifiers that attain accuracies higher than 80%, which have allowed us to identify a set of key protein regions that lead to significant perturbations in c-Myc or NRF2 transcriptional pathway activities.

2.
Sci Transl Med ; 16(736): eabj9905, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416845

RESUMEN

The clinical impact of tumor-specific neoantigens as both immunotherapeutic targets and biomarkers has been impeded by the lack of efficient methods for their identification and validation from routine samples. We have developed a platform that combines bioinformatic analysis of tumor exomes and transcriptional data with functional testing of autologous peripheral blood mononuclear cells (PBMCs) to simultaneously identify and validate neoantigens recognized by naturally primed CD4+ and CD8+ T cell responses across a range of tumor types and mutational burdens. The method features a human leukocyte antigen (HLA)-agnostic bioinformatic algorithm that prioritizes mutations recognized by patient PBMCs at a greater than 40% positive predictive value followed by a short-term in vitro functional assay, which allows interrogation of 50 to 75 expressed mutations from a single 50-ml blood sample. Neoantigens validated by this method include both driver and passenger mutations, and this method identified neoantigens that would not have been otherwise detected using an in silico prediction approach. These findings reveal an efficient approach to systematically validate clinically actionable neoantigens and the T cell receptors that recognize them and demonstrate that patients across a variety of human cancers have a diverse repertoire of neoantigen-specific T cells.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos Infiltrantes de Tumor
3.
Nat Cancer ; 5(5): 791-807, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228835

RESUMEN

Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.


Asunto(s)
Neoplasias Encefálicas , Linfocitos T , Humanos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Niño , Linfocitos T/inmunología , Antígenos de Neoplasias/inmunología , Inmunoterapia/métodos , Preescolar , Masculino , Femenino , Adolescente , Linfocitos Infiltrantes de Tumor/inmunología , Análisis de la Célula Individual/métodos , Transcriptoma , Células Clonales
4.
J Clin Invest ; 133(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655661

RESUMEN

Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response to ICB of an aggressive low-TMB squamous cell tumor could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4+ and CD8+ T cells. We found that, whereas vaccination with CD4+ or CD8+ NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1+ tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4+/CD8+ T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8+ T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. We believe that the concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Vacunación , Epítopos , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos
6.
Nat Immunol ; 24(8): 1345-1357, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400675

RESUMEN

CD4+ T cells play key roles in a range of immune responses, either as direct effectors or through accessory cells, including CD8+ T lymphocytes. In cancer, neoantigen (NeoAg)-specific CD8+ T cells capable of direct tumor recognition have been extensively studied, whereas the role of NeoAg-specific CD4+ T cells is less well understood. We have characterized the murine CD4+ T cell response against a validated NeoAg (CLTCH129>Q) expressed by the MHC-II-deficient squamous cell carcinoma tumor model (SCC VII) at the level of single T cell receptor (TCR) clonotypes and in the setting of adoptive immunotherapy. We find that the natural CLTCH129>Q-specific repertoire is diverse and contains TCRs with distinct avidities as measured by tetramer-binding assays and CD4 dependence. Despite these differences, CD4+ T cells expressing high or moderate avidity TCRs undergo comparable in vivo proliferation to cross-presented antigen from growing tumors and drive similar levels of therapeutic immunity that is dependent on CD8+ T cells and CD40L signaling. Adoptive cellular therapy (ACT) with NeoAg-specific CD4+ T cells is most effective when TCR-engineered cells are differentiated ex vivo with IL-7 and IL-15 rather than IL-2 and this was associated with both increased expansion as well as the acquisition and stable maintenance of a T stem cell memory (TSCM)-like phenotype in tumor-draining lymph nodes (tdLNs). ACT with TSCM-like CD4+ T cells results in lower PD-1 expression by CD8+ T cells in the tumor microenvironment and an increased frequency of PD-1+CD8+ T cells in tdLNs. These findings illuminate the role of NeoAg-specific CD4+ T cells in mediating antitumor immunity via providing help to CD8+ T cells and highlight their therapeutic potential in ACT.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Inmunoterapia Adoptiva , Inmunoterapia , Linfocitos T CD4-Positivos , Células Madre , Microambiente Tumoral
7.
bioRxiv ; 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37205330

RESUMEN

Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response of an aggressive low TMB squamous cell tumor to ICB could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4 + and CD8 + T cells. We found that, whereas vaccination with CD4 + or CD8 + NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1 + tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4 + /CD8 + T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8 + T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. The concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.

8.
Cell Rep ; 42(5): 112508, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37171962

RESUMEN

The role that human papillomavirus (HPV) oncogenes play in suppressing responses to immunotherapy in cancer deserves further investigation. In particular, the effects of HPV E5 remain poorly understood relative to E6 and E7. Here, we demonstrate that HPV E5 is a negative regulator of anti-viral interferon (IFN) response pathways, antigen processing, and antigen presentation. Using head and neck cancer as a model, we identify that E5 decreases expression and function of the immunoproteasome and that the immunoproteasome, but not the constitutive proteasome, is associated with improved overall survival in patients. Moreover, immunopeptidome analysis reveals that HPV E5 restricts the repertoire of antigens presented on the cell surface, likely contributing to immune escape. Mechanistically, we discover a direct interaction between E5 and stimulator of interferon genes (STING), which suppresses downstream IFN signaling. Taken together, these findings identify a powerful molecular mechanism by which HPV E5 limits immune detection and mediates resistance to immunotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Virus del Papiloma Humano , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Interferones/metabolismo
9.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36512410

RESUMEN

CD4+ T cells play a critical role in antitumor immunity via recognition of peptide antigens presented on MHC class II (MHC-II). Although some solid cancers can be induced to express MHC-II, the extent to which this enables direct recognition by tumor-specific CD4+ T cells is unclear. We isolated and characterized T cell antigen receptors (TCRs) from naturally primed CD4+ T cells specific for 2 oncoproteins, HPV-16 E6 and the activating KRASG12V mutation, from patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma, respectively, and determined their ability to recognize autologous or human leukocyte antigen-matched antigen-expressing tumor cells. We found in both cases that the TCRs were capable of recognizing peptide-loaded target cells expressing the relevant MHC-II or B cell antigen-presenting cells (APCs) when the antigens were endogenously expressed and directed to the endosomal pathway but failed to recognize tumor cells expressing the source protein even after induction of surface MHC-II expression by IFN-γ or transduction with CIITA. These results suggest that priming and functional recognition of both a nuclear (E6) and a membrane-associated (KRAS) oncoprotein are predominantly confined to crosspresenting APCs rather than via direct recognition of tumor cells induced to express MHC-II.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias Pancreáticas , Humanos , Epítopos , Oncogenes , Antígenos HLA , Receptores de Antígenos de Linfocitos T/metabolismo , Neoplasias Pancreáticas/genética , Péptidos/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(10): e2113329119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35239442

RESUMEN

SignificanceThe CD4+ Treg response following acute Listeria infection is heterogeneous and deploys two distinct modes of suppression coinciding with initial pathogen exposure and resolution of infection. This bimodal suppression of CD8+ T cells during priming and contraction is mediated by separate Treg lineages. These findings make a significant contribution to our understanding of the functional plasticity inherent within Tregs, which allows these cells to serve as a sensitive and dynamic cellular rheostat for the immune system to prevent autoimmune pathology in the face of inflammation attendant to acute infection, enable expansion of the pathogen-specific response needed to control the infection, and reestablish immune homeostasis after the threat has been contained.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Linfocitos T Reguladores/inmunología , 5'-Nucleotidasa/inmunología , Enfermedad Aguda , Animales , Ratones
11.
iScience ; 25(2): 103850, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35128348

RESUMEN

Many steps of the MHC class I antigen processing pathway can be predicted using computational methods. Here we show that epitope predictions can be further improved by considering abundance levels of peptides' source proteins. We utilized biophysical principles and existing MHC binding prediction tools in concert with abundance estimates of source proteins to derive a function that estimates the likelihood of a peptide to be an MHC class I ligand. We found that this combination improved predictions for both naturally eluted ligands and cancer neoantigen epitopes. We compared the use of different measures of antigen abundance, including mRNA expression by RNA-Seq, gene translation by Ribo-Seq, and protein abundance by proteomics on a dataset of SARS-CoV-2 epitopes. Epitope predictions were improved above binding predictions alone in all cases and gave the highest performance when using proteomic data. Our results highlight the value of incorporating antigen abundance levels to improve epitope predictions.

12.
Front Immunol ; 12: 735609, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504503

RESUMEN

Recent years have witnessed a dramatic rise in interest towards cancer epitopes in general and particularly neoepitopes, antigens that are encoded by somatic mutations that arise as a consequence of tumorigenesis. There is also an interest in the specific T cell and B cell receptors recognizing these epitopes, as they have therapeutic applications. They can also aid in basic studies to infer the specificity of T cells or B cells characterized in bulk and single-cell sequencing data. The resurgence of interest in T cell and B cell epitopes emphasizes the need to catalog all cancer epitope-related data linked to the biological, immunological, and clinical contexts, and most importantly, making this information freely available to the scientific community in a user-friendly format. In parallel, there is also a need to develop resources for epitope prediction and analysis tools that provide researchers access to predictive strategies and provide objective evaluations of their performance. For example, such tools should enable researchers to identify epitopes that can be effectively used for immunotherapy or in defining biomarkers to predict the outcome of checkpoint blockade therapies. We present here a detailed vision, blueprint, and work plan for the development of a new resource, the Cancer Epitope Database and Analysis Resource (CEDAR). CEDAR will provide a freely accessible, comprehensive collection of cancer epitope and receptor data curated from the literature and provide easily accessible epitope and T cell/B cell target prediction and analysis tools. The curated cancer epitope data will provide a transparent benchmark dataset that can be used to assess how well prediction tools perform and to develop new prediction tools relevant to the cancer research community.


Asunto(s)
Antígenos de Neoplasias/inmunología , Biología Computacional , Epítopos de Linfocito B , Epítopos de Linfocito T , Neoplasias/inmunología , Antígenos de Neoplasias/genética , Bases de Datos Genéticas , Humanos , Inmunoterapia , Mutación , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Microambiente Tumoral
14.
Cell Rep ; 31(1): 107249, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268093

RESUMEN

CD4+ T lymphocytes are crucial for controlling a range of innate and adaptive immune effectors. For CD8+ cytotoxic T lymphocyte (CTL) responses, CD4+ T cells can function as helpers (TH) to amplify magnitude and functionality or as regulatory cells (Treg) capable of profound inhibition. It is unclear what determines differentiation to these phenotypes and whether pathogens provoke alternate programs. We find that, depending on the size of initial dose, Listeria infection drives CD4+ T cells to act as TH or induces rapid polyclonal conversion to immunosuppressive Treg. Conversion to Treg depends on the TLR9 and IL-12 pathways elicited by CD8α+ dendritic cell (DC) sensing of danger-associated neutrophil self-DNA. These findings resolve long-standing questions regarding the conditional requirement for TH amongst pathogens and reveal a remarkable degree of plasticity in the function of CD4+ T cells, which can be quickly converted to Tregin vivo by infection-mediated immune modulation.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , ADN/inmunología , Listeriosis/inmunología , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 9/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , ADN/genética , Células Dendríticas/inmunología , Femenino , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/genética , Inmunidad Celular/inmunología , Interleucina-12/biosíntesis , Interleucina-12/genética , Interleucina-12/inmunología , Listeria monocytogenes/inmunología , Listeriosis/genética , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Receptor Toll-Like 9/genética
15.
J Leukoc Biol ; 107(4): 625-633, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32170883

RESUMEN

The goal of precision immunotherapy is to direct a patient's T cell response against the immunogenic mutations expressed on their tumors. Most immunotherapy approaches to-date have focused on MHC class I-restricted peptide epitopes by which cytotoxic CD8+ T lymphocytes (CTL) can directly recognize tumor cells. This strategy largely overlooks the critical role of MHC class II-restricted CD4+ T cells as both positive regulators of CTL and other effector cell types, and as direct effectors of antitumor immunity. In this review, we will discuss the role of neoantigen specific CD4+ T cells in cancer immunotherapy and how existing treatment modalities may be leveraged to engage this important T cell subset.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Animales , Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Cáncer/inmunología , Humanos , Linfocitos T Colaboradores-Inductores/inmunología
16.
Cancer Immunol Res ; 7(10): 1714-1726, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31409607

RESUMEN

Irreversible electroporation (IRE) is a nonthermal ablation technique that is used clinically in selected patients with locally advanced pancreatic cancer, but most patients develop recurrent distant metastatic disease. We hypothesize that IRE can induce an in situ vaccination effect by releasing tumor neoantigens in an inflammatory context. Using an immunocompetent mouse model, we demonstrated that IRE alone produced complete regression of subcutaneous tumors in approximately 20% to 30% of mice. IRE was not effective in immunodeficient mice. Mice with complete response to IRE demonstrated prophylactic immunity and remained tumor free when rechallenged with secondary tumors on the contralateral flank. CD8+ T cells from IRE-responsive mice were reactive against peptides representing model-inherent alloantigens and conferred protection against tumor challenge when adoptively transferred into immunocompromised, tumor-naïve mice. Combining IRE with intratumoral Toll-like receptor-7 (TLR7) agonist (1V270) and systemic anti-programmed death-1 receptor (PD)-1 checkpoint blockade resulted in improved treatment responses. This combination also resulted in elimination of untreated concomitant distant tumors (abscopal effects), an effect not seen with IRE alone. These results suggest that the systemic antitumor immune response triggered by IRE can be enhanced by stimulating the innate immune system with a TLR7 agonist and the adaptive immune system with anti-PD-1 checkpoint blockade simultaneously. Combinatorial approaches such as this may help overcome the immunosuppressive pancreatic cancer microenvironment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Electroporación/métodos , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor Toll-Like 7/agonistas , Microambiente Tumoral , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inmunidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Front Immunol ; 10: 491, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936880

RESUMEN

Continued discoveries of negative regulators of inflammatory signaling provide detailed molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating evidence indicates that peripheral tolerance is maintained at multiple levels of immune responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review provides a global overview of these regulatory machineries that work in concert to maintain peripheral tolerance at cellular and host levels, focusing on the direct and indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy (CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented responses to CBI have highlighted the central role of T cells in both anti-tumor immunity and peripheral tolerance and underscored the importance of T cell exhaustion in cancer. We discuss the therapeutic implications of modulating the negative regulators of T cell function for tumor immunotherapy with an emphasis on inhibitory surface receptors & ligands-central players in T cell exhaustion and targets of checkpoint blockade immunotherapies. We then introduce a Threshold Model for Immune Activation-the concept that these regulatory mechanisms contribute to defining a set threshold of immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune response. We demonstrate the value of the Threshold Model in understanding clinical responses and immune related adverse events in the context of peripheral tolerance, tumor immunity, and the era of Checkpoint Blockade Immunotherapy.


Asunto(s)
Antígeno B7-H1/inmunología , Antígeno CTLA-4/inmunología , Inmunoterapia , Activación de Linfocitos , Modelos Inmunológicos , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/inmunología , Células Presentadoras de Antígenos/inmunología , Autoinmunidad , Humanos , Tolerancia Inmunológica , Inflamación/inmunología , Neoplasias/inmunología , Especificidad de Órganos , Receptores de Citocinas/inmunología , Receptores de Citocinas/fisiología , Transducción de Señal , Transcripción Genética , Escape del Tumor
18.
Cancer Immunol Res ; 7(1): 40-49, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30482746

RESUMEN

Adoptive cellular therapy (ACT) using T-cell receptor (TCR)-engineered lymphocytes holds promise for eradication of disseminated tumors but also an inherent risk of pathologic autoimmunity if targeted antigens or antigenic mimics are expressed by normal tissues. We evaluated whether modulating TCR affinity could allow CD8+ T cells to control tumor outgrowth without inducing concomitant autoimmunity in a preclinical murine model of ACT. RIP-mOVA mice express a membrane-bound form of chicken ovalbumin (mOVA) as a self-antigen in kidney and pancreas. Such mice were implanted with OVA-expressing ID8 ovarian carcinoma cells and subsequently treated with CD8+ T lymphocytes (CTL) expressing either a high-affinity (OT-I) or low-affinity (OT-3) OVA-specific TCR. The effects on tumor growth versus organ-specific autoimmunity were subsequently monitored. High-affinity OT-I CTLs underwent activation and proliferation in both tumor-draining and pancreatic lymph nodes, leading to both rapid eradication of ID8-OVA tumors and autoimmune diabetes in all treated mice. Remarkably, the low-affinity OT-3 T cells were activated only by tumor-derived antigen and mediated transient regression of ID8-OVA tumors without concomitant autoimmunity. The OT-3 cells eventually upregulated inhibitory receptors PD-1, TIM-3, and LAG-3 and became functionally unresponsive, however, allowing the tumors in treated mice to reestablish progressive growth. Antibody-mediated blockade of the inhibitory receptors prevented exhaustion and allowed tumor clearance, but these mice also developed autoimmune diabetes. The findings reveal that low-affinity TCRs can mediate tumor regression and that functional avidity can discriminate between tumor-derived and endogenous antigen, while highlighting the risks involved in immune-checkpoint blockade on endogenous self-reactive T cells.


Asunto(s)
Antígenos de Neoplasias/inmunología , Autoantígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias Ováricas/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Alérgenos/inmunología , Animales , Línea Celular , Diabetes Mellitus Tipo 1/inmunología , Femenino , Inmunoterapia Adoptiva , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/inmunología
19.
Front Immunol ; 9: 2319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364187

RESUMEN

There is a need for new vaccine adjuvant strategies that offer both vigorous antibody and T-cell mediated protection to combat difficult intracellular pathogens and cancer. To this aim, we formulated class-B synthetic oligodeoxynucleotide containing unmethylated cytosine-guanine motifs (CpG-ODN) with a nanostructure (Coa-ASC16 or coagel) formed by self-assembly of 6-0-ascorbyl palmitate ester. Our previous results demonstrated that mice immunized with ovalbumin (OVA) and CpG-ODN formulated with Coa-ASC16 (OVA/CpG-ODN/Coa-ASC16) elicited strong antibodies (IgG1 and IgG2a) and Th1/Th17 cellular responses without toxic systemic effects. These responses were superior to those induced by a solution of OVA with CpG-ODN or OVA/CpG-ODN formulated with aluminum salts. In this study, we investigated the capacity of this adjuvant strategy (CpG-ODN/Coa-ASC16) to elicit CD8+ T-cell response and some of the underlying cellular and molecular mechanisms involved in adaptive response. We also analyzed whether this adjuvant strategy allows a switch from an immunization scheme of three-doses to one of single-dose. Our results demonstrated that vaccination with OVA/CpG-ODN/Coa-ASC16 elicited an antigen-specific long-lasting humoral response and importantly-high quality CD8+ T-cell immunity with a single-dose immunization. Moreover, Coa-ASC16 promoted co-uptake of OVA and CpG-ODN by dendritic cells. The CD8+ T-cell response induced by OVA/CpG-ODN/Coa-ASC16 was dependent of type I interferons and independent of CD4+ T-cells, and showed polyfunctionality and efficiency against an intracellular pathogen. Furthermore, the cellular and humoral responses elicited by the nanostructured formulation were IL-6-independent. This system provides a simple and inexpensive adjuvant strategy with great potential for future rationally designed vaccines.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Interferón Tipo I/metabolismo , Oligodesoxirribonucleótidos/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos/química , Citocinas/metabolismo , Humanos , Inmunidad Humoral , Ratones , Ratones Noqueados , Nanoestructuras , Oligodesoxirribonucleótidos/química , Ovalbúmina/inmunología , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
20.
J Transl Med ; 16(1): 207, 2018 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-30031393

RESUMEN

Metastatic melanoma represents a challenging clinical situation and, until relatively recently, there was an absence of effective treatment options. However, in 2011, the advanced melanoma treatment landscape was revolutionised with the approval of the anti-cytotoxic T-lymphocyte-associated protein-4 checkpoint inhibitor ipilimumab and the selective BRAF kinase inhibitor vemurafenib, both of which significantly improved overall survival. Since then, availability of new immunotherapies, especially the anti-programmed death-1 checkpoint inhibitors, as well as other targeted therapies, have further improved outcomes for patients with advanced melanoma. Seven years on from the first approval of these novel therapies, evidence for the use of various immune-based and targeted approaches is continuing to increase at a rapid rate. Improved understanding of the tumour microenvironment and tumour immuno-evasion strategies has resulted in different approaches to target and harness the immune response. These new immune-based approaches offer the opportunity for various approaches with distinct modes of action being used in combination with one another, as well as combined with other treatment modalities such as targeted therapy, electrochemotherapy and surgery. The increasing number of treatment options that are now available has resulted in a growing need to identify which patients will derive most benefit from which treatments. Much research is now focused on the identification of biomarkers that can be utilised to help select patients for treatment. These and other recent advances in the management of melanoma were the focus of discussions at the third Melanoma Bridge meeting (30 November-2 December, 2017, Naples, Italy), which is summarised in this report.


Asunto(s)
Melanoma/patología , Biomarcadores de Tumor/metabolismo , Ensayos Clínicos como Asunto , Humanos , Inmunoterapia , Melanoma/inmunología , Modelos Biológicos , Biología de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...