Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 22(1): 52-62, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36343387

RESUMEN

The EGFR/RAS/MEK/ERK signaling pathway (ERK/MAPK) is hyperactivated in most colorectal cancers. A current limitation of inhibitors of this pathway is that they primarily induce cytostatic effects in colorectal cancer cells. Nevertheless, these drugs do induce expression of proapoptotic factors, suggesting they may prime colorectal cancer cells to undergo apoptosis. As histone deacetylase inhibitors (HDACis) induce expression of multiple proapoptotic proteins, we examined whether they could synergize with ERK/MAPK inhibitors to trigger colorectal cancer cell apoptosis. Combined MEK/ERK and HDAC inhibition synergistically induced apoptosis in colorectal cancer cell lines and patient-derived tumor organoids in vitro, and attenuated Apc-initiated adenoma formation in vivo. Mechanistically, combined MAPK/HDAC inhibition enhanced expression of the BH3-only proapoptotic proteins BIM and BMF, and their knockdown significantly attenuated MAPK/HDAC inhibitor-induced apoptosis. Importantly, we demonstrate that the paradigm of combined MAPK/HDAC inhibitor treatment to induce apoptosis can be tailored to specific MAPK genotypes in colorectal cancers, by combining an HDAC inhibitor with either an EGFR, KRASG12C or BRAFV600 inhibitor in KRAS/BRAFWT; KRASG12C, BRAFV600E colorectal cancer cell lines, respectively. These findings identify a series of ERK/MAPK genotype-tailored treatment strategies that can readily undergo clinical testing for the treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Humanos , Apoptosis , Proteínas Reguladoras de la Apoptosis , Muerte Celular , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Receptores ErbB , Inhibidores de Histona Desacetilasas/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos , Sistema de Señalización de MAP Quinasas
2.
Cell Rep Med ; 3(6): 100662, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732155

RESUMEN

Serological markers are a promising tool for surveillance and targeted interventions for Plasmodium vivax malaria. P. vivax is closely related to the zoonotic parasite P. knowlesi, which also infects humans. P. vivax and P. knowlesi are co-endemic across much of South East Asia, making it important to design serological markers that minimize cross-reactivity in this region. To determine the degree of IgG cross-reactivity against a panel of P. vivax serological markers, we assayed samples from human patients with P. knowlesi malaria. IgG antibody reactivity is high against P. vivax proteins with high sequence identity with their P. knowlesi ortholog. IgG reactivity peaks at 7 days post-P. knowlesi infection and is short-lived, with minimal responses 1 year post-infection. We designed a panel of eight P. vivax proteins with low levels of cross-reactivity with P. knowlesi. This panel can accurately classify recent P. vivax infections while reducing misclassification of recent P. knowlesi infections.


Asunto(s)
Malaria Vivax , Malaria , Plasmodium knowlesi , Humanos , Inmunoglobulina G , Malaria/diagnóstico , Malaria Vivax/diagnóstico , Plasmodium vivax
3.
Cell Death Differ ; 29(11): 2288-2302, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35606410

RESUMEN

Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.


Asunto(s)
Neoplasias Colorrectales , Factores de Transcripción , Animales , Ratones , Neoplasias Colorrectales/genética , Epigénesis Genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Front Microbiol ; 12: 643501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276583

RESUMEN

Thailand is aiming for malaria elimination by the year 2030. However, the high proportion of asymptomatic infections and the presence of the hidden hypnozoite stage of Plasmodium vivax are impeding these efforts. We hypothesized that a validated surveillance tool utilizing serological markers of recent exposure to P. vivax infection could help to identify areas of ongoing transmission. The objective of this exploratory study was to assess the ability of P. vivax serological exposure markers to detect residual transmission "hot-spots" in Western Thailand. Total IgG levels were measured against a panel of 23 candidate P. vivax serological exposure markers using a multiplexed bead-based assay. A total of 4,255 plasma samples from a cross-sectional survey conducted in 2012 of endemic areas in the Kanchanaburi and Ratchaburi provinces were assayed. We compared IgG levels with multiple epidemiological factors that are associated with an increased risk of P. vivax infection in Thailand, including age, gender, and spatial location, as well as Plasmodium infection status itself. IgG levels to all proteins were significantly higher in the presence of a P. vivax infection (n = 144) (T-test, p < 0.0001). Overall seropositivity rates varied from 2.5% (PVX_097625, merozoite surface protein 8) to 16.8% (PVX_082670, merozoite surface protein 7), with 43% of individuals seropositive to at least 1 protein. Higher IgG levels were associated with older age (>18 years, p < 0.05) and males (17/23 proteins, p < 0.05), supporting the paradigm that men have a higher risk of infection than females in this setting. We used a Random Forests algorithm to predict which individuals had exposure to P. vivax parasites in the last 9-months, based on their IgG antibody levels to a panel of eight previously validated P. vivax proteins. Spatial clustering was observed at the village and regional level, with a moderate correlation between PCR prevalence and sero-prevalence as predicted by the algorithm. Our data provides proof-of-concept for application of such surrogate markers as evidence of recent exposure in low transmission areas. These data can be used to better identify geographical areas with asymptomatic infection burdens that can be targeted in elimination campaigns.

5.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34180969

RESUMEN

Ets homologous factor (EHF) is a member of the epithelial-specific Ets (ESE) family of transcription factors. To investigate its role in development and epithelial homeostasis, we generated a series of novel mouse strains in which the Ets DNA-binding domain of Ehf was deleted in all tissues (Ehf-/-) or specifically in the gut epithelium. Ehf-/- mice were born at the expected Mendelian ratio, but showed reduced body weight gain, and developed a series of pathologies requiring most Ehf-/- mice to reach an ethical endpoint before reaching 1 year of age. These included papillomas in the facial skin, abscesses in the preputial glands (males) or vulvae (females), and corneal ulcers. Ehf-/-mice also displayed increased susceptibility to experimentally induced colitis, which was confirmed in intestinal-specific Ehf knockout mice. Gut-specific Ehf deletion also impaired goblet cell differentiation, induced extensive transcriptional reprogramming in the colonic epithelium and enhanced Apc-initiated adenoma development. The Ets DNA-binding domain of EHF is therefore essential for postnatal homeostasis of the epidermis and colonic epithelium, and its loss promotes colonic tumour development.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias del Colon/etiología , Epidermis/metabolismo , Genes APC , Homeostasis , Mucosa Intestinal/metabolismo , Factores de Transcripción/genética , Animales , Reprogramación Celular/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Regulación de la Expresión Génica , Células Caliciformes/metabolismo , Células Caliciformes/patología , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción/metabolismo
6.
Mol Cancer Ther ; 20(4): 704-715, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33563752

RESUMEN

Amplification or overexpression of the FGFR family of receptor tyrosine kinases occurs in a significant proportion of gastric cancers. Regorafenib is a multikinase inhibitor of angiogenic and oncogenic kinases, including FGFR, which showed activity in the randomized phase II INTEGRATE clinical trial in advanced gastric cancer. There are currently no biomarkers that predict response to this agent, and whether regorafenib is preferentially active in FGFR-driven cancers is unknown. Through screening 25 gastric cancer cell lines, we identified five cell lines that were exquisitely sensitive to regorafenib, four of which harbored amplification or overexpression of FGFR family members. These four cell lines were also sensitive to the FGFR-specific inhibitors, BGJ398, erdafitinib, and TAS-120. Regorafenib inhibited FGFR-driven MAPK signaling in these cell lines, and knockdown studies confirmed their dependence on specific FGFRs for proliferation. In the INTEGRATE trial cohort, amplification or overexpression of FGFRs 1-4 was detected in 8%-19% of cases, however, this was not associated with improved progression-free survival and no objective responses were observed in these cases. Further preclinical analyses revealed FGFR-driven gastric cancer cell lines rapidly reactivate MAPK/ERK signaling in response to FGFR inhibition, which may underlie the limited clinical response to regorafenib. Importantly, combination treatment with an FGFR and MEK inhibitor delayed MAPK/ERK reactivation and synergistically inhibited proliferation of FGFR-driven gastric cancer cell lines. These findings suggest that upfront combinatorial inhibition of FGFR and MEK may represent a more effective treatment strategy for FGFR-driven gastric cancers.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Compuestos de Fenilurea/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Transfección , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...