Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 14(7): 746-753, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35422457

RESUMEN

Cyclometalated and polypyridyl complexes of d6 metals are promising photoredox catalysts, using light to drive reactions with high kinetic or thermodynamic barriers via the generation of reactive radical intermediates. However, while tuning of their redox potentials, absorption energy, excited-state lifetime and quantum yield are well-known criteria for modifying activity, other factors could be important. Here we show that dynamic ion-pair reorganization controls the reactivity of a photoredox catalyst, [Ir[dF(CF3)ppy]2(dtbpy)]X. Time-resolved dielectric-loss experiments show how counter-ion identity influences excited-state charge distribution, evincing large differences in both the ground- and excited-state dipole moment depending on whether X is a small associating anion (PF6-) that forms a contact-ion pair versus a large one that either dissociates or forms a solvent-separated pair (BArF4-). These differences correlate with the reactivity of the photocatalyst toward both reductive and oxidative electron transfer, amounting to a 4-fold change in selectivity toward oxidation versus reduction. These results suggest that ion pairing could be an underappreciated factor that modulates reactivity in ionic photoredox catalysts.


Asunto(s)
Catálisis , Transporte de Electrón , Iones , Oxidación-Reducción , Solventes
2.
Phys Chem Chem Phys ; 19(12): 8373-8379, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28280802

RESUMEN

In this article we study the ultrafast dynamics of excitons and charge carriers photogenerated in two-dimensional in-plane heterostructures, namely, CdSe-CdTe nanoplatelets. We combine transient absorption and two-dimensional electronic spectroscopy to study charge transfer and delocalization from a few tens of femtoseconds to several nanoseconds. In contrast with spherical nanocrystals, the relative alignment of the electron and hole states of CdSe and CdTe in thin 2D nanoplatelets does not lead to a type-II heterostructure. Following the excitation in CdSe or CdTe materials, the electron preferentially delocalises instantaneously over the whole heterostructure. In addition, depending on the crown material (CdTe versus CdTeSe), the hole transfers either to trap states or to the crown, within a few hundreds of femtoseconds. We conclude that the photoluminescence band, at lower energy than the CdSe and CdTe first exciton transition, does not result from the recombination of the charge carriers at the charge transfer state but involves localised hole states.

3.
J Chem Phys ; 130(21): 214505, 2009 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-19508074

RESUMEN

Recent work has suggested that correlations in the environments of chromophores can lead to a change in the dynamics of excitation transfer in both the coherent and incoherent limits. An example of this effect that is relevant to many single molecule experiments occurs in the standard Forster model for resonant energy transfer (RET). The standard formula for the FRET rate breaks down when the electronic excitations on weakly interacting donor and acceptor couple to the same vibrational modes. The transfer rate can then no longer be factored into donor emission and acceptor absorption lineshapes, but must be recast in terms of a renormalized phonon reorganization energy accounting for the magnitude and sign of the excitation-vibration couplings. In this paper, we derive theoretically how the FRET rate depends on the shared mode structure and coupling, examine the simplified case of Gaussian lineshapes and then provide a quantitative calculation for a system of current interest.

4.
Annu Rev Phys Chem ; 58: 565-84, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17291185

RESUMEN

A combination of single-molecule spectroscopy and analysis with simulations is used to provide detailed information about the structural and dynamic properties of a fluorescent polymer MEH-PPV (poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene]) immersed in a nematic and smectic solvent. In nematic solvents, single-polymer molecules are oriented strongly along the solvent director, much more so than the solvent molecules, confirming Onsager's old prediction. The diffusion anisotropy parallel and perpendicular to the solvent director, however, is less than two, which is similar to that of a spherical colloid in a nematic solvent. In smectic solvents, there is a second orientation of the dissolved polymer perpendicular to the solvent director, which we hypothesize is caused by the polymer occupying the interlayer volume. The research discussed here emphasizes the importance of organization in complex fluids and suggests that the interplay of order on different length scales could be exploited to fabricate novel nanostructured materials.

5.
Nano Lett ; 5(9): 1757-60, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16159219

RESUMEN

We examine the effect of polymer chain segmentation on the recently discovered ability of nematic solvents to elongate and align polymer chain solutes. Coordinated single molecule spectroscopy and beads-on-a-chain simulations are used to study the orientational and conformational order of a series of segmented conjugated polymers, dissolved in the nematic liquid crystal 5CB. The order parameters for alignment and elongation are both observed to decrease with increasing segmentation, reflecting an interplay among conformational entropy, solvation anisotropy, and bending energy of the chain.

6.
J Phys Chem B ; 109(21): 10594-604, 2005 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16852286

RESUMEN

Atomistic models based on quantum-chemical calculations are combined with time-resolved spectroscopic investigations to explore the migration of electronic excitations along oligophenylenevinylene-based chiral stacks. It is found that the usual Pauli master equation (PME) approach relying on uncoherent transport between individual chromophores underestimates the excitation diffusion dynamics, monitored here by the time decay of the transient polarization anisotropy. A better agreement to experiment is achieved when accounting for excitation delocalization among acceptor molecules, as implemented in a modified version of the PME model. The same models are applied to study light harvesting and trapping in guest-host systems built from oligomers of different lengths.

7.
Proc Natl Acad Sci U S A ; 99(17): 10982-7, 2002 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-12177444

RESUMEN

The energy-transfer processes taking place in conjugated polymers are investigated by means of ultrafast spectroscopy and correlated quantum-chemical calculations applied to polyindenofluorenes end-capped with a perylene derivative. Comparison between the time-integrated luminescence and transient absorption spectra measured in solution and in films allows disentangling of the contributions arising from intrachain and from interchain energy-migration phenomena. Intrachain processes dominate in solution where photoexcitation of the polyindenofluorene units induces a rather slow energy transfer to the perylene end moieties. In films, close contacts between chains favors interchain transport of the excited singlet species (from the conjugated bridge of one chain to the perylene unit of a neighboring one); this process is characterized by a 1-order-of-magnitude increase in transfer rate with respect to solution. This description is supported fully by the results of quantum-chemical calculations that go beyond the usual point-dipole model approximation and account for geometric relaxation phenomena in the excited state before energy migration. The calculations indicate a two-step mechanism for intrachain energy transfer with hopping along the conjugated chains as the rate-limiting step; the higher efficiency of the interchain transfer process is mainly due to larger electronic coupling matrix elements between closely lying chains.


Asunto(s)
Polímeros , Transferencia de Energía , Mediciones Luminiscentes , Modelos Teóricos , Fotones , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 97(20): 10808-13, 2000 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-10984512

RESUMEN

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S(1) state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S(1) state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S(2) state or the recently discovered dark state situated between S(1) and S(2). The lifetimes of the carotenoid S(1) states in the B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7+/-0.5 ps and 6+/-0.5 ps, respectively, and in the light-harvesting complex 2 of Rhodobacter sphaeroides approximately 1.9+/-0.5 ps. These results explain the differences in the carotenoid to bacteriochlorophyll energy transfer efficiency after S(2) excitation. In Rps. acidophila the carotenoid S(1) to bacteriochlorophyll energy transfer is found to be quite inefficient (phi(ET1) <28%) whereas in Rb. sphaeroides this energy transfer is very efficient (phi(ET1) approximately 80%). The results are rationalized by calculations of the ensemble averaged time constants. We find that the Car S(1) --> B800 electronic energy transfer (EET) pathway ( approximately 85%) dominates over Car S(1) --> B850 EET ( approximately 15%) in Rb. sphaeroides, whereas in Rps. acidophila the Car S(1) --> B850 EET ( approximately 60%) is more efficient than the Car S(1) --> B800 EET ( approximately 40%). The individual electronic couplings for the Car S(1) --> BChl energy transfer are estimated to be approximately 5-26 cm(-1). A major contribution to the difference between the energy transfer efficiencies can be explained by different Car S(1) energy gaps in the two species.


Asunto(s)
Carotenoides/química , Fotosíntesis , Rhodopseudomonas/química , Luz , Fotones , Rhodopseudomonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA