Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38549375

RESUMEN

Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.

2.
Elife ; 92020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33300869

RESUMEN

Vanishing white matter disease (VWM) is a severe leukodystrophy of the central nervous system caused by mutations in subunits of the eukaryotic initiation factor 2B complex (eIF2B). Current models only partially recapitulate key disease features, and pathophysiology is poorly understood. Through development and validation of zebrafish (Danio rerio) models of VWM, we demonstrate that zebrafish eif2b mutants phenocopy VWM, including impaired somatic growth, early lethality, effects on myelination, loss of oligodendrocyte precursor cells, increased apoptosis in the CNS, and impaired motor swimming behavior. Expression of human EIF2B2 in the zebrafish eif2b2 mutant rescues lethality and CNS apoptosis, demonstrating conservation of function between zebrafish and human. In the mutants, intron 12 retention leads to expression of a truncated eif2b5 transcript. Expression of the truncated eif2b5 in wild-type larva impairs motor behavior and activates the ISR, suggesting that a feed-forward mechanism in VWM is a significant component of disease pathophysiology.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Animales , Humanos , Leucoencefalopatías/fisiopatología , Mutación , Estrés Fisiológico/fisiología , Pez Cebra
3.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32001551

RESUMEN

Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.


Asunto(s)
Personas con Discapacidad , Trastornos Motores , Adulto , Animales , Dopamina , Femenino , Humanos , Hipoxia , Neuronas Motoras , Embarazo , Pez Cebra
4.
Neurotoxicology ; 66: 10-21, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29510177

RESUMEN

Exposure to nerve agents (NAs) and other organophosphates (OPs) can initiate seizures that rapidly progress to status epilepticus (SE). While the electrographic and neuropathological sequelae of SE evoked by NAs and OPs have been characterized in adult rodents, they have not been adequately investigated in immature animals. In this study postnatal day (PND) 14, 21 and 28 rat pups, along with PND70 animals as adult controls, were exposed to NAs (sarin, VX) or another OP (diisopropylfluorophosphate, DFP). We then evaluated behavioral and electrographic (EEG) correlates of seizure activity, and performed neuropathology using Fluoro-Jade B. Although all immature rats exhibited behaviors that are often characterized as seizures, the incidence, duration, and severity of the electrographic seizure activity were age-dependent. No (sarin and VX) or brief (DFP) EEG seizure activity was evoked in PND14 rats, while SE progressively increased in severity as a function of age in PND21, 28 and 70 animals. Fluoro-Jade B staining was observed in multiple brain regions of animals that exhibited prolonged seizure activity. Neuronal injury in PND14 animals treated with DFP was lower than in older animals and absent in rats exposed to sarin or VX. In conclusion, we found that NAs and an OP provoked robust SE and neuronal injury similar to adults in PND21 and PND28, but not in PND14, rat pups. Convulsive behaviors were often present independent of EEG seizures and were unaccompanied by neuronal damage. These differential responses should be considered when investigating medical countermeasures for NA and OP exposure in pediatric populations.


Asunto(s)
Conducta Animal/efectos de los fármacos , Isoflurofato/toxicidad , Agentes Nerviosos/toxicidad , Compuestos Organofosforados/toxicidad , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Femenino , Masculino , Compuestos Organotiofosforados/toxicidad , Sarín/toxicidad
5.
J Pept Sci ; 16(9): 486-95, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20645434

RESUMEN

The neuropeptides galanin (GAL), neuropeptide Y (NPY) or neurotensin (NT) exhibit anticonvulsant activities mediated by their respective receptors in the brain. To transform these peptides into potential neurotherapeutics, their systemic bioavailability and metabolic stability must be improved. Our recent studies with GAL analogs suggested that an introduction of lipoamino acids in the context of oligo-Lys residues (lipidization-cationization motif) significantly increases their penetration into the brain, yielding potent antiepileptic compounds. Here, we describe an extension of this strategy to NPY and NT. Rationally designed analogs of NPY and NT containing the lipidization-cationization motif were chemically synthesized and their physicochemical and pharmacological properties were characterized. The analogs NPY-BBB2 and NT-BBB1 exhibited increased serum stability, possessed log D > 1.1, retained high affinities toward their native receptors and produced potent antiseizure activities in animal models of epilepsy following intraperitoneal administration. Our results suggest that the combination of lipidization and cationization may be an effective strategy for improving systemic bioavailability and metabolic stability of various neuroactive peptides.


Asunto(s)
Anticonvulsivantes/farmacología , Neuropéptido Y/análogos & derivados , Neurotensina/análogos & derivados , Animales , Anticonvulsivantes/síntesis química , Barrera Hematoencefálica/efectos de los fármacos , Cationes/química , Epilepsia/tratamiento farmacológico , Lípidos/química , Neuropéptido Y/síntesis química , Neuropéptido Y/farmacología , Neurotensina/síntesis química , Neurotensina/farmacología , Ratas , Receptores de Neuropéptido Y/metabolismo , Receptores de Neurotensina/metabolismo
6.
J Med Chem ; 53(4): 1871-5, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20121116

RESUMEN

Galanin modulates seizures in the brain through two galanin receptor subtypes, GalR1 and GalR2. To generate systemically active galanin receptor ligands that discriminate between GalR1 and GalR2, the GalR1-preferring analogue Gal-B2 (or NAX 5055) was rationally redesigned to yield GalR2-preferring analogues. Systematic truncations of the N-terminal backbone led to [N-Me,des-Sar]Gal-B2, containing N-methyltryptophan. This analogue exhibited 18-fold preference in binding toward GalR2, maintained agonist activity, and exhibited potent anticonvulsant activity in mice following intraperitoneal administration.


Asunto(s)
Anticonvulsivantes/síntesis química , Galanina/análogos & derivados , Galanina/síntesis química , Oligopéptidos/síntesis química , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Secuencia de Aminoácidos , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Calcio/metabolismo , Galanina/química , Galanina/farmacología , Humanos , Técnicas In Vitro , Ligandos , Ratones , Datos de Secuencia Molecular , Oligopéptidos/química , Oligopéptidos/farmacología , Ensayo de Unión Radioligante , Ratas , Receptor de Galanina Tipo 1/agonistas , Receptor de Galanina Tipo 2/agonistas , Relación Estructura-Actividad
7.
Neurotherapeutics ; 6(2): 372-80, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19332332

RESUMEN

The endogenous neuropeptide galanin and its associated receptors galanin receptor 1 and galanin receptor 2 are highly localized in brain limbic structures and play an important role in the control of seizures in animal epilepsy models. As such, galanin receptors provide an attractive target for the development of novel anticonvulsant drugs. Our efforts to engineer galanin analogs that can penetrate the blood-brain-barrier and suppress seizures, yielded NAX 5055 (Gal-B2), a systemically-active analog that maintains low nanomolar affinity for galanin receptors and displays a potent anticonvulsant activity. In this report, we show that NAX 5055 is active in three models of epilepsy: 1) the Frings audiogenic seizure-susceptible mouse, 2) the mouse corneal kindling model of partial epilepsy, and 3) the 6 Hz model of pharmacoresistant epilepsy. NAX 5055 was not active in the traditional maximal electroshock and subcutaneous pentylenetetrazol seizure models. Unlike most antiepileptic drugs, NAX 5055 showed high potency in the 6 Hz model of epilepsy across all three different stimulation currents; i.e., 22, 32 and 44 mA, suggesting a potential use in the treatment of pharmacoresistant epilepsy. Furthermore, NAX 5055 was found to be biologically active after intravenous, intraperitoneal, and subcutaneous administration, and efficacy was associated with a linear pharmacokinetic profile. The results of the present investigation suggest that NAX 5055 is a first-in-class neurotherapeutic for the treatment of epilepsy in patients refractory to currently approved antiepileptic drugs.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Galanina/análogos & derivados , Animales , Anticonvulsivantes/química , Modelos Animales de Enfermedad , Excitación Neurológica/efectos de los fármacos , Masculino , Ratones
8.
J Med Chem ; 51(24): 8038-47, 2008 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19053761

RESUMEN

Galanin is an endogenous neuropeptide that modulates seizures in the brain. Because this neuropeptide does not penetrate the blood-brain barrier, we designed truncated galanin analogues in which nonessential amino acid residues were replaced by cationic and/or lipoamino acid residues. The analogues prevented seizures in the 6 Hz mouse model of epilepsy following intraperitoneal administration. The most active analogue, Gal-B2 (NAX 5055), contained the -Lys-Lys-Lys(palmitoyl)-Lys-NH(2) motif and exhibited high affinity for galanin receptors (K(i) = 3.5 nM and 51.5 nM for GalR1 and GalR2, respectively), logD = 1.24, minimal helical conformation and improved metabolic stability. Structure-activity-relationship analysis suggested that cationization combined with position-specific lipidization was critical for improving the systemic activity of the analogues. Because the anticonvulsant activity of galanin is mediated by the receptors located in hippocampus and other limbic brain structures, our data suggest that these analogues penetrate into the brain. Gal-B2 may lead to development of first-in-class antiepileptic drugs.


Asunto(s)
Anticonvulsivantes/farmacología , Química Farmacéutica/métodos , Epilepsia/tratamiento farmacológico , Galanina/análogos & derivados , Galanina/química , Secuencias de Aminoácidos , Animales , Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Encéfalo/patología , Diseño de Fármacos , Cinética , Ligandos , Ratones , Modelos Químicos , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...