Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 14(1): 18, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195548

RESUMEN

The partial N-methyl-D-aspartate receptor (NMDAR) agonist D-Cycloserine (DCS) has been evaluated for the treatment of a wide variety of psychiatric disorders, including dementia, schizophrenia, depression and for the augmentation of exposure-based psychotherapy. Most if not all of the potential psychiatric applications of DCS target an enhancement or restitution of cognitive functions, learning and memory. Their molecular correlate is long-term synaptic plasticity; and many forms of synaptic plasticity depend on the activation of NMDA receptors. Here, we comprehensively examined the modulation of different forms of synaptic plasticity in the hippocampus by DCS and its mechanism. We found that DCS positively modulates NMDAR-dependent forms of long-term synaptic plasticity (long-term synaptic potentiation, LTP, and long-term synaptic depression, LTD) in hippocampal brain slices of juvenile rats without affecting basal synaptic transmission. DCS binds to the D-serine/glycine binding site of the NMDAR. Pharmacological inhibition of this site prevented the induction of LTP, whereas agonism at the D-serine/glycine binding site augmented LTP and could functionally substitute for weak LTP induction paradigms. The most probable origin of endogenous D-serine are astrocytes, and its exocytosis is regulated by astrocytic metabotropic glutamate receptors (mGluR1). Functional eradication of astrocytes, inhibition of mGluR1 receptors and G-protein signaling in astrocytes adjacent to postsynaptic neurons prevented the induction of NMDAR-dependent forms of LTP and LTD. Our results support the enhancement of a bidirectional range of NMDAR-dependent hippocampal synaptic plasticity by DCS and D-serine-mediated gliotransmission. Therefore, the D-serine/glycine-binding site in NMDAR is a major target for psychopharmacological interventions targeting plasticity-related disorders.


Asunto(s)
Cicloserina , Receptores de N-Metil-D-Aspartato , Humanos , Animales , Ratas , Cicloserina/farmacología , Plasticidad Neuronal , Serina , Glicina , Hipocampo
2.
Biol Psychiatry ; 84(1): 55-64, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29174591

RESUMEN

BACKGROUND: Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. METHODS: We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca2+) channels in heterologous expression systems were used to determine the modulation of Ca2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. RESULTS: SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. CONCLUSIONS: These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression.


Asunto(s)
Antidepresivos/uso terapéutico , Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al ARN/metabolismo , Estrés Psicológico/tratamiento farmacológico , Transmisión Sináptica/efectos de los fármacos , Factores de Edad , Animales , Células CHO , Cloruro de Cadmio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Cricetulus , Modelos Animales de Enfermedad , Estimulación Eléctrica , Femenino , Fluvoxamina/uso terapéutico , Células HEK293 , Suspensión Trasera/psicología , Hipocampo/citología , Humanos , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Nifedipino/farmacología , Paroxetina/farmacología , Técnicas de Placa-Clamp , Piperazinas/farmacología , Piridinas/farmacología , Proteínas de Unión al ARN/genética , Ratas , Ratas Transgénicas , Ratas Wistar , Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Estrés Psicológico/genética , Natación/psicología , Transmisión Sináptica/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA