Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Transpl Int ; 37: 11900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304198

RESUMEN

The generation of insulin-producing cells from human-induced pluripotent stem cells holds great potential for diabetes modeling and treatment. However, existing protocols typically involve incubating cells with un-physiologically high concentrations of glucose, which often fail to generate fully functional IPCs. Here, we investigated the influence of high (20 mM) versus low (5.5 mM) glucose concentrations on IPCs differentiation in three hiPSC lines. In two hiPSC lines that were unable to differentiate to IPCs sufficiently, we found that high glucose during differentiation leads to a shortage of NKX6.1+ cells that have co-expression with PDX1 due to insufficient NKX6.1 gene activation, thus further reducing differentiation efficiency. Furthermore, high glucose during differentiation weakened mitochondrial respiration ability. In the third iPSC line, which is IPC differentiation amenable, glucose concentrations did not affect the PDX1/NKX6.1 expression and differentiation efficiency. In addition, glucose-stimulated insulin secretion was only seen in the differentiation under a high glucose condition. These IPCs have higher KATP channel activity and were linked to sufficient ABCC8 gene expression under a high glucose condition. These data suggest high glucose concentration during IPC differentiation is necessary to generate functional IPCs. However, in cell lines that were IPC differentiation unamenable, high glucose could worsen the situation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/metabolismo , Diferenciación Celular , Glucosa/farmacología , Glucosa/metabolismo
2.
Adv Healthc Mater ; 13(13): e2303785, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38221504

RESUMEN

Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.


Asunto(s)
Islotes Pancreáticos , Dispositivos Laboratorio en un Chip , Hígado , Organoides , Humanos , Hígado/metabolismo , Organoides/metabolismo , Islotes Pancreáticos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Glucosa/metabolismo
3.
J Chromatogr A ; 1717: 464669, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38278130

RESUMEN

Organoids are 3D cell cultures with microanatomies mimicking aspects of real organs, useful for e.g. animal-free studies of development, disease, and drug discovery. The cell medium of organoid models of Langerhans islets, regulating blood glucose levels by insulin secretion, can be analyzed by liquid chromatography-mass spectrometry (LC-MS). However, organoid medium complexity is a major challenge, as matrix interferences can reduce sensitivity and selectivity, even with optimized LC-MS conditions. By applying preparative agarose gel electrophoresis-electrodialysis (PGE-ED), we were able to decrease the cell medium background signal, allowing for reduced interferences affecting LC-MS analysis of human insulin.


Asunto(s)
Insulina , Cromatografía Líquida con Espectrometría de Masas , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Organoides , Electroforesis en Gel de Agar
4.
Stem Cells Transl Med ; 13(1): 14-29, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38071447

RESUMEN

Perinatal derivatives have been proposed as adjunct therapeutic strategies or innovative treatments. Undoubtedly, perinatal derivatives can offer the opportunity and source material to isolate multipotent stem cells, but both maternal- and fetal-derived tissues can be processed and transformed into engineered tissues or advanced biomedical devices, whose potential remains to be fully elucidated. Promising preclinical and clinical results collected so far clearly foresee an escalation of such novel treatments. Market forecasts predict exponential growth in such advanced medicinal products during the next decade, with a pragmatic innovation for medicine into a more advanced biomedical version, enlarging the portfolio for treating a wide range of congenital and acute conditions. However, all these promising and fascinating therapeutic possibilities cannot gain a solid and recognized role in established medical practice without rigid and harmonized manufacturing strategies. The implementation of strategies according to guidelines and directives compiled by Regulatory Agencies, in conformity to (European) Pharmacopoeia and for Good Manufacturing Practice -conforming production of such products, represent critical steps required to translate perinatal technologies into effective therapeutic approaches. During the past 5 years, a panel of European experts and developers, gathered under the umbrella of the COST Sprint Action, supported by the European Cooperation in Science and Technology action, had the opportunity to revise and summarize experience and recommendations for a fruitful and proficient generation of perinatal biomedical products. In order to facilitate the creation and potential commercialization of perinatal bioengineered and advanced pharmaceutical products and technologies, such a collection of data and recommendations is described and discussed here.


Asunto(s)
Medicina , Ingeniería de Tejidos , Embarazo , Femenino , Humanos
5.
Adv Healthc Mater ; 12(32): e2300640, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37781993

RESUMEN

Intra-portal islet transplantation is currently the only clinically approved beta cell replacement therapy, but its outcome is hindered by limited cell survival due to a multifactorial reaction against the allogeneic tissue in liver. Adipose-derived stromal cells (ASCs) can potentially improve the islet micro-environment by their immunomodulatory action. The challenge is to combine both islets and ASCs in a relatively easy and consistent long-term manner in a deliverable scaffold. Manufacturing the 3D bioprinted double-layered scaffolds with primary islets and ASCs using a mix of alginate/nanofibrillated cellulose (NFC) bioink is reported. The diffusion properties of the bioink and the supportive effect of human ASCs on islet viability, glucose sensing, insulin secretion, and reducing the secretion of pro-inflammatory cytokines are demonstrated. Diabetic mice transplanted with islet-ASC scaffolds reach normoglycemia seven days post-transplantation with no significant difference between this group and the group received islets under the kidney capsules. In addition, animals transplanted with islet-ASC scaffolds stay normoglycemic and show elevated levels of C-peptide compared to mice transplanted with islet-only scaffolds. The data present a functional 3D bioprinted scaffold for islets and ASCs transplanted to the extrahepatic site and suggest a possible role of ASCs on improving the islet micro-environment.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones , Humanos , Animales , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células del Estroma/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo
6.
Transpl Int ; 36: 11633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822447

RESUMEN

The field of transplantation has witnessed the emergence of Advanced Therapy Medicinal Products (ATMPs) as highly promising solutions to address the challenges associated with organ and tissue transplantation. ATMPs encompass gene therapy, cell therapy, and tissue-engineered products, hold immense potential for breakthroughs in overcoming the obstacles of rejection and the limited availability of donor organs. However, the development and academic research access to ATMPs face significant bottlenecks that hinder progress. This opinion paper emphasizes the importance of addressing bottlenecks in the development and academic research access to ATMPs by implementing several key strategies. These include the establishment of streamlined regulatory processes, securing increased funding for ATMP research, fostering collaborations and partnerships, setting up centralized ATMP facilities, and actively engaging with patient groups. Advocacy at the policy level is essential to provide support for the development and accessibility of ATMPs, thereby driving advancements in transplantation and enhancing patient outcomes. By adopting these strategies, the field of transplantation can pave the way for the introduction of innovative and efficacious ATMP therapies, while simultaneously fostering a nurturing environment for academic research.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Ingeniería de Tejidos , Humanos , Terapia Genética
7.
Acta Physiol (Oxf) ; 239(2): e14037, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37621186

RESUMEN

AIM: The variation in quality between the human islet samples represents a major problem for research, especially when used as control material. The assays assessing the quality of human islets used in research are non-standardized and limited, with many important parameters not being consistently assessed. High-throughput studies aimed at characterizing the diversity and segregation markers among apparently functionally healthy islet preps are thus a requirement. Here, we designed a pilot study to comprehensively identify the diversity of global proteome signatures and the deviation from normal homeostasis in randomly selected human-isolated islet samples. METHODS: By using Tandem Mass Tag 16-plex proteomics, we focused on the recurrently observed disparity in the detected insulin abundance between the samples, used it as a segregating parameter, and analyzed the correlated changes in the proteome signature and homeostasis by pathway analysis. RESULTS: In this pilot study, we showed that insulin protein abundance is a predictor of human islet homeostasis and quality. This parameter is independent of other quality predictors within their acceptable range, thus being able to further stratify islets samples of apparent good quality. Human islets with low amounts of insulin displayed changes in their metabolic and signaling profile, especially in regard to energy homeostasis and cell identity maintenance. We further showed that xenotransplantation into diabetic hosts is not expected to improve the pre-transplantation signature, as it has a negative effect on energy balance, antioxidant activity, and islet cell identity. CONCLUSIONS: Insulin protein abundance predicts significant changes in human islet homeostasis among random samples of apparently good quality.


Asunto(s)
Insulina , Islotes Pancreáticos , Humanos , Insulina/metabolismo , Proteómica , Proteoma/metabolismo , Proyectos Piloto , Islotes Pancreáticos/metabolismo , Homeostasis
8.
Electrophoresis ; 44(21-22): 1682-1697, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37574258

RESUMEN

For studying stem cell-derived islet organoids (SC-islets) in an organ-on-chip (OoC) platform, we have developed a reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method allowing for simultaneous determination of insulin, somatostatin-14, and glucagon, with improved matrix robustness compared to earlier methodology. Combining phenyl/hexyl-C18 separations using 2.1 mm inner diameter LC columns and triple quadrupole mass spectrometry, identification and quantification were secured with negligible variance in retention time and quantifier/qualifier ratios, negligible levels of carryover (<2%), and sufficient precision (±10% RSD) and accuracy (±15% relative error) with and without use of an internal standard. The obtained lower limits of quantification were 0.2 µg/L for human insulin, 0.1 µg/L for somatostatin-14, and 0.05 µg/L for glucagon. The here-developed RPLC-MS/MS method showed that the SC-islets have an insulin response dependent on glucose concentration, and the SC-islets produce and release somatostatin-14 and glucagon. The RPLC-MS/MS method for these peptide hormones was compatible with an unfiltered offline sample collection from SC-islets cultivated on a pumpless, recirculating OoC (rOoC) platform. The SC-islets background secretion of insulin was not significantly different on the rOoC device compared to a standard cell culture well-plate. Taken together, RPLC-MS/MS method is well suited for multi-hormone measurements of SC-islets on an OoC platform.


Asunto(s)
Glucagón , Islotes Pancreáticos , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Glucosa , Islotes Pancreáticos/fisiología , Insulina , Péptidos , Somatostatina , Organoides , Células Madre
9.
Biomed Mater ; 18(4)2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37321229

RESUMEN

Establishing a vascular network in biofabricated tissue grafts is essential for ensuring graft survival. Such networks are dependent on the ability of the scaffold material to facilitate endothelial cell adhesion; however, the clinical translation potential of tissue-engineered scaffolds is hindered by the lack of available autologous sources of vascular cells. Here, we present a novel approach to achieving autologous endothelialisation in nanocellulose-based scaffolds by using adipose tissue-derived vascular cells on nanocellulose-based scaffolds. We used sodium periodate-mediated bioconjugation to covalently bind laminin to the scaffold surface and isolated the stromal vascular fraction and endothelial progenitor cells (EPCs; CD31+CD45-) from human lipoaspirate. Additionally, we assessed the adhesive capacity of scaffold bioconjugationin vitrousing both adipose tissue-derived cell populations and human umbilical vein endothelial cells. The results showed that the bioconjugated scaffold exhibited remarkably higher cell viability and scaffold surface coverage by adhesion regardless of cell type, whereas control groups comprising cells on non-bioconjugated scaffolds exhibited minimal cell adhesion across all cell types. Furthermore, on culture day 3, EPCs seeded on laminin-bioconjugated scaffolds showed positive immunofluorescence staining for the endothelial markers CD31 and CD34, suggesting that the scaffolds promoted progenitor differentiation into mature endothelial cells. These findings present a possible strategy for generating autologous vasculature and thereby increase the clinical relevance of 3D-bioprinted nanocellulose-based constructs.


Asunto(s)
Laminina , Fracción Vascular Estromal , Humanos , Alginatos , Andamios del Tejido , Células Endoteliales de la Vena Umbilical Humana , Ingeniería de Tejidos/métodos
10.
Cell Rep Methods ; 3(4): 100440, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159662

RESUMEN

Confocal Raman spectral imaging (RSI) enables high-content, label-free visualization of a wide range of molecules in biological specimens without sample preparation. However, reliable quantification of the deconvoluted spectra is needed. Here we develop an integrated bioanalytical methodology, qRamanomics, to qualify RSI as a tissue phantom calibrated tool for quantitative spatial chemotyping of major classes of biomolecules. Next, we apply qRamanomics to fixed 3D liver organoids generated from stem-cell-derived or primary hepatocytes to assess specimen variation and maturity. We then demonstrate the utility of qRamanomics for identifying biomolecular response signatures from a panel of liver-altering drugs, probing drug-induced compositional changes in 3D organoids followed by in situ monitoring of drug metabolism and accumulation. Quantitative chemometric phenotyping constitutes an important step in developing quantitative label-free interrogation of 3D biological specimens.


Asunto(s)
Quimiometría , Hígado , Hígado/diagnóstico por imagen , Diagnóstico por Imagen , Hepatocitos , Organoides
12.
Macromol Biosci ; 23(7): e2200422, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36729619

RESUMEN

Injury of the cornea is a complex biological process. Regeneration of the corneal stroma can be facilitated by the presence of mesenchymal stromal cells (MSCs) and application of tissue equivalents. A new tissue-engineering strategy for corneal stroma regeneration is presented using cellularized 3D bioprinted hydrogel constructs implanted into organ cultured porcine corneas using femtosecond laser-assisted intrastromal keratoplasty. The ex vivo cultured, MSC-loaded 3D bioprinted structures remain intact, support cell survival, and contain de novo synthesized extracellular matrix components and migrating cells throughout the observation period. At day 14 postimplantation, the cellularized tissue equivalents contain few or no cells, as demonstrated by optical coherence tomography imaging and immunofluorescent staining. This study successfully combines a laboratory-based method with modern, patient-care practice to produce a cell-laden tissue equivalent for corneal implantation. Optimal bioink composition and cellularization of tissue equivalents are essential in fine-tuning a method to promote the current technique as a future treatment modality.


Asunto(s)
Bioimpresión , Trasplante de Córnea , Células Madre Mesenquimatosas , Porcinos , Animales , Córnea , Trasplante de Córnea/métodos , Sustancia Propia/cirugía , Rayos Láser , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Impresión Tridimensional
13.
Artículo en Inglés | MEDLINE | ID: mdl-36542899

RESUMEN

Organoids are laboratory-grown 3D organ models, mimicking human organs for e.g. drug development and personalized therapy. Islet organoids (typically 100-200 µm), which can be grown from the patient́s own cells, are emerging as prototypes for transplantation-based therapy of diabetes. Selective methods for quantifying insulin production from islet organoids are needed, but sensitivity and carry-over have been major bottlenecks in previous efforts. We have developed a reverse phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method for studying the insulin secretion of islet organoids. In contrast to our previous attempts using nano-scale LC columns, conventional 2.1 mm inner diameter LC column (combined with triple quadrupole mass spectrometry) was well suited for sensitive and selective measurements of insulin secreted from islet organoids with low microliter-scale samples. Insulin is highly prone to carry-over, so standard tubings and injector parts were replaced with shielded fused silica connectors. As samples were expected to be very limited, an extended Box-Behnken experimental design for the MS settings was conducted to maximize performance. The finale method has excellent sensitivity, accuracy and precision (limit of detection: ≤0.2 pg/µL, relative error: ≤±10%, relative standard deviation: <10%), and was well suited for measuring 20 µL amounts of Krebs buffer containing insulin secreted from islet organoids.


Asunto(s)
Organoides , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Secreción de Insulina , Cromatografía Liquida/métodos , Organoides/metabolismo , Insulina/metabolismo , Células Madre/metabolismo
14.
Anal Chem ; 94(50): 17677-17684, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36484723

RESUMEN

Organoids, i.e., laboratory-grown organ models developed from stem cells, are emerging tools for studying organ physiology, disease modeling, and drug development. On-line analysis of organoids with mass spectrometry would provide analytical versatility and automation. To achieve these features with robust hardware, we have loaded liquid chromatography column housings with induced pluripotent stem cell (iPSC) derived liver organoids and coupled the "organ-in-a-column" units on-line with liquid chromatography-mass spectrometry (LC-MS). Liver organoids were coloaded with glass beads to achieve an even distribution of organoids throughout the column while preventing clogging. The liver organoids were interrogated "on column" with heroin, followed by on-line monitoring of the drug's phase 1 metabolism. Enzymatic metabolism of heroin produced in the "organ-in-a-column" units was detected and monitored using a triple quadrupole MS instrument, serving as a proof-of-concept for on-line coupling of liver organoids and mass spectrometry. Taken together, the technology allows direct integration of liver organoids with LC-MS, allowing selective and automated tracking of drug metabolism over time.


Asunto(s)
Heroína , Hígado , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Automatización
15.
Transpl Int ; 35: 10507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033644

RESUMEN

A global online survey was administered to 69 islet transplantation programs, covering 84 centers and 5 networks. The survey addressed questions on program organization and activity in the 2000-2020 period, including impact on activity of national health care coverage policies. We obtained full data from 55 institutions or networks worldwide and basic activity data from 6 centers. Additional data were obtained from alternative sources. A total of 94 institutions and 5 networks was identified as having performed islet allotransplantation. 4,365 islet allotransplants (2,608 in Europe, 1,475 in North America, 135 in Asia, 119 in Oceania, 28 in South America) were reported in 2,170 patients in the survey period. From 15 centers active at the start of the study period, the number of simultaneously active islet centers peaked at 54, to progressively decrease to 26 having performed islet allotransplants in 2020. Notably, only 16 centers/networks have done >100 islet allotransplants in the survey period. Types of transplants performed differed notably between North America and the rest of the world, in particular with respect to the near-absence of simultaneous islet-kidney transplantation. Absence of heath care coverage has significantly hampered transplant activity in the past years and the COVID-19 pandemic in 2020.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Trasplante de Páncreas , Humanos , Pandemias
17.
Transplantation ; 106(8): 1647-1655, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019897

RESUMEN

BACKGROUND: The long-term outcomes of both pancreas and islet allotransplantation have been compromised by difficulties in the detection of early graft dysfunction at a time when a clinical intervention can prevent further deterioration and preserve allograft function. The lack of standardized strategies for monitoring pancreas and islet allograft function prompted an international survey established by an International Pancreas and Islet Transplant Association/European Pancreas and Islet Transplant Association working group. METHODS: A global survey was administered to 24 pancreas and 18 islet programs using Redcap. The survey addressed protocolized and for-cause immunologic and metabolic monitoring strategies following pancreas and islet allotransplantation. All invited programs completed the survey. RESULTS: The survey identified that in both pancreas and islet allograft programs, protocolized clinical monitoring practices included assessing body weight, fasting glucose/C-peptide, hemoglobin A1c, and donor-specific antibody. Protocolized monitoring in islet transplant programs relied on the addition of mixed meal tolerance test, continuous glucose monitoring, and autoantibody titers. In the setting of either suspicion for rejection or serially increasing hemoglobin A1c/fasting glucose levels postpancreas transplant, Doppler ultrasound, computed tomography, autoantibody titers, and pancreas graft biopsy were identified as adjunctive strategies to protocolized monitoring studies. No additional assays were identified in the setting of serially increasing hemoglobin A1c levels postislet transplantation. CONCLUSIONS: This international survey identifies common immunologic and metabolic monitoring strategies utilized for protocol and for cause following pancreas and islet transplantation. In the absence of any formal studies to assess the efficacy of immunologic and metabolic testing to detect early allograft dysfunction, it can serve as a guidance document for developing monitoring algorithms following beta-cell replacement.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Trasplante de Páncreas , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/cirugía , Hemoglobina Glucada , Humanos , Trasplante de Islotes Pancreáticos/efectos adversos , Trasplante de Islotes Pancreáticos/métodos , Páncreas/metabolismo , Trasplante de Páncreas/efectos adversos
18.
Diabetes ; 71(4): 862-869, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35043148

RESUMEN

Studies of monogenic diabetes are particularly useful because we can gain insight into the molecular events of pancreatic ß-cell failure. Maturity-onset diabetes of the young 1 (MODY1) is a form of monogenic diabetes caused by a mutation in the HNF4A gene. Human-induced pluripotent stem cells (hiPSCs) provide an excellent tool for disease modeling by subsequently directing differentiation toward desired pancreatic islet cells, but cellular phenotypes in terminally differentiated cells are notoriously difficult to detect. Re-creating a spatial (three-dimensional [3D]) environment may facilitate phenotype detection. We studied MODY1 by using hiPSC-derived pancreatic ß-like patient and isogenic control cell lines in two different 3D contexts. Using size-adjusted cell aggregates and alginate capsules, we show that the 3D context is critical to facilitating the detection of mutation-specific phenotypes. In 3D cell aggregates, we identified irregular cell clusters and lower levels of structural proteins by proteome analysis, whereas in 3D alginate capsules, we identified altered levels of glycolytic proteins in the glucose sensing apparatus by proteome analysis. Our study provides novel knowledge on normal and abnormal function of HNF4A, paving the way for translational studies of new drug targets that can be used in precision diabetes medicine in MODY.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Alginatos/metabolismo , Cápsulas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Mutación , Proteoma
19.
Cancer Res Commun ; 2(4): 233-245, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36873622

RESUMEN

The catalytic enzymes tankyrase 1 and 2 (TNKS1/2) alter protein turnover by poly-ADP-ribosylating target proteins, which earmark them for degradation by the ubiquitin-proteasomal system. Prominent targets of the catalytic activity of TNKS1/2 include AXIN proteins, resulting in TNKS1/2 being attractive biotargets for addressing of oncogenic WNT/ß-catenin signaling. Although several potent small molecules have been developed to inhibit TNKS1/2, there are currently no TNKS1/2 inhibitors available in clinical practice. The development of tankyrase inhibitors has mainly been disadvantaged by concerns over biotarget-dependent intestinal toxicity and a deficient therapeutic window. Here we show that the novel, potent, and selective 1,2,4-triazole-based TNKS1/2 inhibitor OM-153 reduces WNT/ß-catenin signaling and tumor progression in COLO 320DM colon carcinoma xenografts upon oral administration of 0.33-10 mg/kg twice daily. In addition, OM-153 potentiates anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint inhibition and antitumor effect in a B16-F10 mouse melanoma model. A 28-day repeated dose mouse toxicity study documents body weight loss, intestinal damage, and tubular damage in the kidney after oral-twice daily administration of 100 mg/kg. In contrast, mice treated oral-twice daily with 10 mg/kg show an intact intestinal architecture and no atypical histopathologic changes in other organs. In addition, clinical biochemistry and hematologic analyses do not identify changes indicating substantial toxicity. The results demonstrate OM-153-mediated antitumor effects and a therapeutic window in a colon carcinoma mouse model ranging from 0.33 to at least 10 mg/kg, and provide a framework for using OM-153 for further preclinical evaluations. Significance: This study uncovers the effectiveness and therapeutic window for a novel tankyrase inhibitor in mouse tumor models.


Asunto(s)
Carcinoma , Neoplasias del Colon , Tanquirasas , Humanos , Ratones , Animales , beta Catenina/química , Neoplasias del Colon/tratamiento farmacológico , Vía de Señalización Wnt
20.
Transpl Int ; 34(9): 1588-1593, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34448263

RESUMEN

The generation of human mini-organs, the so-called organoids, is one of the biggest scientific advances in regenerative medicine. This technology exploits traditional three-dimensional culture techniques that support cell-autonomous self-organization responses of stem cells to derive micrometer to millimeter size versions of human organs. The convergence of the organoid technology with organ transplantation is still in its infancy but this alliance is expected to open new venues to change the way we conduct both transplant and organoid research. In this Forum we provide a summary on early achievements facilitating organoid derivation and culture. We further discuss on early advances of organoid transplantation also offering a comprehensive overview of current limitations and challenges to instruct organoid maturation. We expect that this Forum sets the ground for initial discussions between stem cell biologists, bioengineers, and the transplant community to better direct organoid basic research to advance the organ transplantation field.


Asunto(s)
Trasplante de Órganos , Organoides , Humanos , Medicina Regenerativa , Células Madre , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...