Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stud Health Technol Inform ; 302: 871-875, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37203520

RESUMEN

Conducting large-scale epidemiologic studies requires powerful software for electronic data capture, data management, data quality assessments, and participant management. There is also an increasing need to make studies and the data collected findable, accessible, interoperable, and reusable (FAIR). However, reusable software tools from major studies, underlying such needs, are not necessarily known to other researchers. Therefore, this work gives an overview on the main tools used to conduct the internationally highly networked population-based project Study of Health in Pomerania (SHIP), as well as approaches taken to improve its FAIRness. Deep phenotyping, formalizing processes from data capture to data transfer, with a strong emphasis on cooperation and data exchange have laid the foundation for a broad scientific impact with more than 1500 published papers to date.


Asunto(s)
Manejo de Datos , Programas Informáticos , Humanos , Estudios de Cohortes , Investigación , Estudios Epidemiológicos
2.
Molecules ; 25(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143351

RESUMEN

Carbon nanotube yarns (CNY) are a novel carbonaceous material and have received a great deal of interest since the beginning of the 21st century. CNY are of particular interest due to their useful heat conducting, electrical conducting, and mechanical properties. The electrical conductivity of carbon nanotube yarns can also be influenced by functionalization and annealing. A systematical study of this post synthetic treatment will assist in understanding what factors influences the conductivity of these materials. In this investigation, it is shown that the electrical conductivity can be increased by a factor of 2 and 5.5 through functionalization with acids and high temperature annealing respectively. The scale of the enhancement is dependent on the reducing of intertube space in case of functionalization. For annealing, not only is the highly graphitic structure of the carbon nanotubes (CNT) important, but it is also shown to influence the residual amorphous carbon in the structure. The promising results of this study can help to utilize CNY as a replacement for common materials in the field of electrical wiring.


Asunto(s)
Nanotubos de Carbono/química , Conductividad Eléctrica , Nanotecnología/métodos
3.
Molecules ; 25(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120977

RESUMEN

Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.


Asunto(s)
Técnicas Electroquímicas/métodos , Iones/química , Litio/química , Nanotubos de Carbono/química , Cobalto/química , Conductividad Eléctrica , Suministros de Energía Eléctrica , Electrodos , Compuestos Férricos/química , Compuestos de Manganeso/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanocompuestos/química , Nanocompuestos/ultraestructura , Nanotubos de Carbono/ultraestructura , Óxidos/química , Estaño/química
4.
Beilstein J Nanotechnol ; 9: 1024-1034, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719754

RESUMEN

In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

5.
Sci Rep ; 7(1): 13625, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051613

RESUMEN

The ferrimagnetic and high-capacity electrode material Mn3O4 is encapsulated inside multi-walled carbon nanotubes (CNT). We show that the rigid hollow cavities of the CNT enforce size-controlled nanoparticles which are electrochemically active inside the CNT. The ferrimagnetic Mn3O4 filling is switched by electrochemical conversion reaction to antiferromagnetic MnO. The conversion reaction is further exploited for electrochemical energy storage. Our studies confirm that the theoretical reversible capacity of the Mn3O4 filling is fully accessible. Upon reversible cycling, the Mn3O4@CNT nanocomposite reaches a maximum discharge capacity of 461 mA h g-1 at 100 mA g-1 with a capacity retention of 90% after 50 cycles. We attribute the good cycling stability to the hybrid nature of the nanocomposite: (1) Carbon encasements ensure electrical contact to the active material by forming a stable conductive network which is unaffected by potential cracks of the encapsulate. (2) The CNT shells resist strong volume changes of the encapsulate in response to electrochemical cycling, which in conventional (i.e., non-nanocomposite) Mn3O4 hinders the application in energy storage devices. Our results demonstrate that Mn3O4 nanostructures can be successfully grown inside CNT and the resulting nanocomposite can be reversibly converted and exploited for lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...