Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Microb Physiol ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816339

RESUMEN

The denitrifying betaproteobacterium Aromatoleum aromaticum EbN1T is a facultative anaerobic degradation specialist and belongs to the environmental bacteria studied best on the proteogenomic level. This review summarizes the current state of knowledge about the anaerobic and aerobic degradation (to CO2) of 47 organic growth substrates (23 aromatic, 21 aliphatic, and 3 amino acids) as well as the modes of respiratory energy conservation (denitrification vs. O2-respiration). The constructed catabolic network is comprised of 256 genes, which occupy ~7.5% of the coding regions of the genome. In total 219 encoded proteins have been identified by differential proteomics, yielding a proteome coverage of ~74% of the network. Its degradation section is composed of 31 peripheral and 4 central pathways, with several peripheral modules (e.g., for 4-ethylphenol, 2-phenylethylamine, indoleacetate, and phenylpropanoids) discovered only after the complete genome [Rabus et al., Arch Microbiol 2005 Jan;183(1):27‒36] and a first proteomic survey [Wöhlbrand et al., Proteomics 2007 Jun;7(13):2222‒39] of A. aromaticum EbN1T were reported. The activation of recalcitrant aromatic compounds involves a suite of biochemically intriguing reactions ranging from CH-bond activation (e.g., ethylbenzene dehydrogenase) via carboxylation (e.g., acetophenone carboxylase) to oxidative deamination (e.g., benzylamine), reductive dearomatization (benzoyl-CoA), and epoxide-forming oxygenases (e.g., phenylacetyl-CoA). The peripheral reaction sequences are substrate-specifically induced, mediated by specific transcriptional regulators with in vivo response thresholds in the nanomolar range. While lipophilic substrates (e.g., phenolics) enter the cells via passive diffusion, polar ones require active uptake that is driven by specific transporters. Next to the protein repertoire for canonical complexes I‒III, denitrification and O2-respiration (low and high affinity oxidases), the genome encodes an Ndh-II, a tetrathionate reductase, two ETF:quinone oxidoreductases, and two Rnf-type complexes, broadening the electron transfer flexibility of the strain. Taken together, the detailed catabolic network presented here forms a solid basis for future systems biology level studies with A. aromaticum EbN1T.

2.
mSystems ; 7(6): e0068522, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445109

RESUMEN

Members of the genus Aromatoleum thrive in diverse habitats and use a broad range of recalcitrant organic molecules coupled to denitrification or O2 respiration. To gain a holistic understanding of the model organism A. aromaticum EbN1T, we studied its catabolic network dynamics in response to 3-(4-hydroxyphenyl)propanoate, phenylalanine, 3-hydroxybenzoate, benzoate, and acetate utilized under nitrate-reducing versus oxic conditions. Integrated multi-omics (transcriptome, proteome, and metabolome) covered most of the catabolic network (199 genes) and allowed for the refining of knowledge of the degradation modules studied. Their substrate-dependent regulation showed differing degrees of specificity, ranging from high with 3-(4-hydroxyphenyl)propanoate to mostly relaxed with benzoate. For benzoate, the transcript and protein formation were essentially constitutive, contrasted by that of anoxia-specific versus oxia-specific metabolite profiles. The matrix factorization of transcriptomic data revealed that the anaerobic modules accounted for most of the variance across the degradation network. The respiration network appeared to be constitutive, both on the transcript and protein levels, except for nitrate reductase (with narGHI expression occurring only under nitrate-reducing conditions). The anoxia/nitrate-dependent transcription of denitrification genes is apparently controlled by three FNR-type regulators as well as by NarXL (all constitutively formed). The resequencing and functional reannotation of the genome fostered a genome-scale metabolic model, which is comprised of 655 enzyme-catalyzed reactions and 731 distinct metabolites. The model predictions for growth rates and biomass yields agreed well with experimental stoichiometric data, except for 3-(4-hydroxyphenyl)propanoate, with which 4-hydroxybenzoate was exported. Taken together, the combination of multi-omics, growth physiology, and a metabolic model advanced our knowledge of an environmentally relevant microorganism that differs significantly from other bacterial model strains. IMPORTANCE Aromatic compounds are abundant constituents not only of natural organic matter but also of bulk industrial chemicals and fuel components of environmental concern. Considering the widespread occurrence of redox gradients in the biosphere, facultative anaerobic degradation specialists can be assumed to play a prominent role in the natural mineralization of organic matter and in bioremediation at contaminated sites. Surprisingly, differential multi-omics profiling of the A. aromaticum EbN1T studied here revealed relaxed regulatory stringency across its four main physiological modi operandi (i.e., O2-independent and O2-dependent degradation reactions versus denitrification and O2 respiration). Combining multi-omics analyses with a genome-scale metabolic model aligned with measured growth performances establishes A. aromaticum EbN1T as a systems-biology model organism and provides unprecedented insights into how this bacterium functions on a holistic level. Moreover, this experimental platform invites future studies on eco-systems and synthetic biology of the environmentally relevant betaproteobacterial Aromatoleum/Azoarcus/Thauera cluster.


Asunto(s)
Propionatos , Biología de Sistemas , Anaerobiosis , Nitratos , Benzoatos
3.
Environ Microbiol ; 24(7): 3195-3211, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35590445

RESUMEN

Large quantities of organic matter are continuously deposited, and (a)biotic gradients intersect in the soil-rhizosphere, where biodegradation contributes to the global cycles of elements. The betaproteobacterial genus Aromatoleum comprises cosmopolitan, facultative denitrifying degradation specialists. Aromatoleum aromaticum. pCyN1 stands out for anaerobically decomposing plant-derived monoterpenes in addition to monoaromatic hydrocarbons, polar aromatics and aliphatics. The catabolic network's structure and flexibility in A. aromaticum pCyN1 were studied across 34 growth conditions by superimposing proteome profiles onto the manually annotated 4.37 Mbp genome. Strain pCyN1 employs three fundamentally different enzymes for C-H-bond cleavage at the methyl groups of p-cymene/4-ethyltoluene, toluene and p-cresol respectively. Regulation of degradation modules displayed substrate specificities ranging from narrow (toluene and cyclohexane carboxylate) via medium-wide (one module shared by p-cymene, 4-ethyltoluene, α-phellandrene, α-terpinene, γ-terpinene and limonene) to broad (central benzoyl-CoA pathway serving 16 aromatic substrates). Remarkably, three variants of ATP-dependent (class I) benzoyl-CoA reductase and four different ß-oxidation routes establish a degradation hub that accommodates the substrate diversity. The respiratory system displayed several conspicuous profiles, e.g. the presence of nitrous oxide reductase under oxic and of low-affinity oxidase under anoxic conditions. Overall, nutritional versatility in conjunction with network regulation endow A. aromaticum pCyN1 with broad adaptability.


Asunto(s)
Rhodocyclaceae , Tolueno , Anaerobiosis , Biodegradación Ambiental , Rhodocyclaceae/metabolismo , Tolueno/metabolismo
4.
Metabolites ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671140

RESUMEN

Genome-scale metabolic models are of high interest in a number of different research fields. Flux balance analysis (FBA) and other mathematical methods allow the prediction of the steady-state behavior of metabolic networks under different environmental conditions. However, many existing applications for flux optimizations do not provide a metabolite-centric view on fluxes. Metano is a standalone, open-source toolbox for the analysis and refinement of metabolic models. While flux distributions in metabolic networks are predominantly analyzed from a reaction-centric point of view, the Metano methods of split-ratio analysis and metabolite flux minimization also allow a metabolite-centric view on flux distributions. In addition, we present MMTB (Metano Modeling Toolbox), a web-based toolbox for metabolic modeling including a user-friendly interface to Metano methods. MMTB assists during bottom-up construction of metabolic models by integrating reaction and enzymatic annotation data from different databases. Furthermore, MMTB is especially designed for non-experienced users by providing an intuitive interface to the most commonly used modeling methods and offering novel visualizations. Additionally, MMTB allows users to upload their models, which can in turn be explored and analyzed by the community. We introduce MMTB by two use cases, involving a published model of Corynebacterium glutamicum and a newly created model of Phaeobacter inhibens.

5.
PLoS One ; 16(1): e0244988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411772

RESUMEN

The virulence of Clostridioides difficile (formerly Clostridium difficile) is mainly caused by its two toxins A and B. Their formation is significantly regulated by metabolic processes. Here we investigated the influence of various sugars (glucose, fructose, mannose, trehalose), sugar derivatives (mannitol and xylitol) and L-lactate on toxin synthesis. Fructose, mannose, trehalose, mannitol and xylitol in the growth medium resulted in an up to 2.2-fold increase of secreted toxin. Low glucose concentration of 2 g/L increased the toxin concentration 1.4-fold compared to growth without glucose, while high glucose concentrations in the growth medium (5 and 10 g/L) led to up to 6.6-fold decrease in toxin formation. Transcriptomic and metabolic investigation of the low glucose effect pointed towards an inactive CcpA and Rex regulatory system. L-lactate (500 mg/L) significantly reduced extracellular toxin formation. Transcriptome analyses of the later process revealed the induction of the lactose utilization operon encoding lactate racemase (larA), electron confurcating lactate dehydrogenase (CDIF630erm_01321) and the corresponding electron transfer flavoprotein (etfAB). Metabolome analyses revealed L-lactate consumption and the formation of pyruvate. The involved electron confurcation process might be responsible for the also observed reduction of the NAD+/NADH ratio which in turn is apparently linked to reduced toxin release from the cell.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Glucosa/farmacología , Ácido Láctico/farmacología , Metaboloma/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/crecimiento & desarrollo , Edulcorantes/farmacología
6.
Nucleic Acids Res ; 49(D1): D498-D508, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211880

RESUMEN

The BRENDA enzyme database (https://www.brenda-enzymes.org), established in 1987, has evolved into the main collection of functional enzyme and metabolism data. In 2018, BRENDA was selected as an ELIXIR Core Data Resource. BRENDA provides reliable data, continuous curation and updates of classified enzymes, and the integration of newly discovered enzymes. The main part contains >5 million data for ∼90 000 enzymes from ∼13 000 organisms, manually extracted from ∼157 000 primary literature references, combined with information of text and data mining, data integration, and prediction algorithms. Supplements comprise disease-related data, protein sequences, 3D structures, genome annotations, ligand information, taxonomic, bibliographic, and kinetic data. BRENDA offers an easy access to enzyme information from quick to advanced searches, text- and structured-based queries for enzyme-ligand interactions, word maps, and visualization of enzyme data. The BRENDA Pathway Maps are completely revised and updated for an enhanced interactive and intuitive usability. The new design of the Enzyme Summary Page provides an improved access to each individual enzyme. A new protein structure 3D viewer was integrated. The prediction of the intracellular localization of eukaryotic enzymes has been implemented. The new EnzymeDetector combines BRENDA enzyme annotations with protein and genome databases for the detection of eukaryotic and prokaryotic enzymes.


Asunto(s)
Bases de Datos de Proteínas , Enzimas/química , Acetilcoenzima A/biosíntesis , Arabidopsis/enzimología , Bacillus subtilis/enzimología , Imagenología Tridimensional , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Motor de Búsqueda
7.
F1000Res ; 9: 288, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765840

RESUMEN

Metabolic pathways are an important part of systems biology research since they illustrate complex interactions between metabolites, enzymes, and regulators. Pathway maps are drawn to elucidate metabolism or to set data in a metabolic context. We present MetaboMAPS, a web-based platform to visualize numerical data on individual metabolic pathway maps. Metabolic maps can be stored, distributed and downloaded in SVG-format. MetaboMAPS was designed for users without computational background and supports pathway sharing without strict conventions. In addition to existing applications that established standards for well-studied pathways, MetaboMAPS offers a niche for individual, customized pathways beyond common knowledge, supporting ongoing research by creating publication-ready visualizations of experimental data.


Asunto(s)
Visualización de Datos , Redes y Vías Metabólicas , Metabolómica , Programas Informáticos , Biología de Sistemas
8.
Front Microbiol ; 11: 587032, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488537

RESUMEN

Present in many industrial effluents and as common degradation product of organic matter, phenol is a widespread compound which may cause serious environmental problems, due to its toxicity to animals and humans. Degradation of phenol from the environment by mesophilic bacteria has been studied extensively over the past decades, but only little is known about phenol biodegradation at high temperatures or low pH. In this work we studied phenol degradation in the thermoacidophilic archaeon Saccharolobus solfataricus P2 (basonym: Sulfolobus solfataricus) under extreme conditions (80°C, pH 3.5). We combined metabolomics and transcriptomics together with metabolic modeling to elucidate the organism's response to growth with phenol as sole carbon source. Although S. solfataricus is able to utilize phenol for biomass production, the carbon source induces profound stress reactions, including genome rearrangement as well as a strong intracellular accumulation of polyamines. Furthermore, computational modeling revealed a 40% higher oxygen demand for substrate oxidation, compared to growth on glucose. However, only 16.5% of oxygen is used for oxidation of phenol to catechol, resulting in a less efficient integration of carbon into the biomass. Finally, our data underlines the importance of the phenol meta-degradation pathway in S. solfataricus and enables us to predict enzyme candidates involved in the degradation processes downstream of 2-hydroxymucconic acid.

9.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604772

RESUMEN

Growth energetics and metabolic efficiency contribute to the lifestyle and habitat imprint of microorganisms. Roseobacters constitute one of the most abundant and successful marine bacterioplankton groups. Here, we reflect on the energetics and metabolic efficiency of Phaeobacter inhibens DSM 17395, a versatile heterotrophic roseobacter. Fourteen different substrates (five sugars and nine amino acids) and their degradation pathways were assessed for energetic efficiencies based on catabolic ATP yields, calculated from net formed ATP and reducing equivalents. The latter were converted into ATP by employing the most divergent coupling ratios (i.e., ions per ATP) currently known for F1Fo ATP synthases in heterotrophic bacteria. The catabolic ATP yields of the pathways studied in P. inhibens differed ∼3-fold. The actual free energy costs for ATP synthesis were estimated at 81.6 kJ per mol ATP (3.3 ions per ATP) or 104.2 kJ per mol ATP (4.3 ions per ATP), yielding an average thermodynamic efficiency of ∼37.7% or ∼29.5%, respectively. Growth performance (rates, yields) and carbon assimilation efficiency were determined for P. inhibens growing in process-controlled bioreactors with 10 different single substrates (Glc, Man, N-acetylglucosamine [Nag], Phe, Trp, His, Lys, Thr, Val, or Leu) and with 2 defined substrate mixtures. The efficiencies of carbon assimilation into biomass ranged from ∼28% to 61%, with His/Trp and Thr/Leu yielding the lowest and highest levels. These efficiencies correlated with catabolic and ATP yields only to some extent. Substrate-specific metabolic demands and/or functions, as well as the compositions of the substrate mixtures, apparently affected the energetic costs of growth. These include energetic burdens associated with, e.g., slow growth, stress, and/or the production of tropodithietic acid.IMPORTANCE Heterotrophic members of the bacterioplankton serve the marine ecosystem by transforming organic matter, an activity that is governed by the bacterial growth efficiencies (BGEs) obtained under given environmental conditions. In marine ecology, the concept of BGE refers to the carbon assimilation efficiency within natural communities. The marine bacterium studied here, Phaeobacter inhibens DSM 17395, is a copiotrophic representative of the globally abundant Roseobacter group, and the 15 catabolic pathways investigated are widespread among these marine heterotrophs. Combining pathway-specific catabolic ATP yields with in-depth quantitative physiological data could (i) provide a new baseline for the study of growth energetics and efficiency in further Roseobacter group members and other copiotrophic marine bacteria in productive coastal ecosystems and (ii) contribute to a better understanding of the factors controlling BGE (including the additional energetic burden arising from widespread secondary-metabolite formation) based on laboratory studies with pure cultures.


Asunto(s)
Aminoácidos/metabolismo , Procesos Heterotróficos/fisiología , Rhodobacteraceae/metabolismo , Azúcares/metabolismo , Adenosina Trifosfato/metabolismo , Biomasa , Reactores Biológicos , Metabolismo de los Hidratos de Carbono , Redes y Vías Metabólicas , Rhodobacteraceae/crecimiento & desarrollo , Roseobacter/metabolismo , Tropolona/análogos & derivados
10.
Environ Microbiol Rep ; 11(6): 777-783, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31503400

RESUMEN

Free-living bacteria such as Pseudomonas putida are frequently exposed to temperature shifts and non-optimal growth conditions. We compared the transcriptome and metabolome of the cold adaptation of P. putida KT2440 and isogenic cold-sensitive transposon mutants carrying transposons in their cbrA, cbrB, pcnB, vacB, and bipA genes. Pseudomonas putida changes the mRNA expression of about 43% of all annotated open reading frames during this initial phase of cold adaptation, but only a small number of 6-93 genes were differentially expressed at 10°C between the wild-type strain and the individual mutants. The spectrum of metabolites underwent major changes during cold adaptation particularly in the mutants. Both the KT2440 strain and the mutants increased the levels of the most abundant sugars and amino acids which were more pronounced in the cold-sensitive mutants. All mutants depleted their pools for core metabolites of aromatic and sugar metabolism, but increased their pool of polar amino acids which should be advantageous to cope with the cold stress.


Asunto(s)
Adaptación Fisiológica , Factores Biológicos/análisis , Frío , Metabolismo , Metaboloma , Pseudomonas putida/metabolismo , Pseudomonas putida/efectos de la radiación , Elementos Transponibles de ADN , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Metabolómica , Mutagénesis Insercional , Pseudomonas putida/genética
11.
Archaea ; 2019: 3208051, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178666

RESUMEN

Microorganisms are well adapted to their habitat but are partially sensitive to toxic metabolites or abiotic compounds secreted by other organisms or chemically formed under the respective environmental conditions. Thermoacidophiles are challenged by pyroglutamate, a lactam that is spontaneously formed by cyclization of glutamate under aerobic thermoacidophilic conditions. It is known that growth of the thermoacidophilic crenarchaeon Saccharolobus solfataricus (formerly Sulfolobus solfataricus) is completely inhibited by pyroglutamate. In the present study, we investigated the effect of pyroglutamate on the growth of S. solfataricus and the closely related crenarchaeon Sulfolobus acidocaldarius. In contrast to S. solfataricus, S. acidocaldarius was successfully cultivated with pyroglutamate as a sole carbon source. Bioinformatical analyses showed that both members of the Sulfolobaceae have at least one candidate for a 5-oxoprolinase, which catalyses the ATP-dependent conversion of pyroglutamate to glutamate. In S. solfataricus, we observed the intracellular accumulation of pyroglutamate and crude cell extract assays showed a less effective degradation of pyroglutamate. Apparently, S. acidocaldarius seems to be less versatile regarding carbohydrates and prefers peptidolytic growth compared to S. solfataricus. Concludingly, S. acidocaldarius exhibits a more efficient utilization of pyroglutamate and is not inhibited by this compound, making it a better candidate for applications with glutamate-containing media at high temperatures.


Asunto(s)
Ácido Glutámico/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Sulfolobus acidocaldarius/crecimiento & desarrollo , Sulfolobus solfataricus/crecimiento & desarrollo , Medios de Cultivo , Piroglutamato Hidrolasa/metabolismo , Sulfolobaceae/crecimiento & desarrollo , Sulfolobaceae/metabolismo , Sulfolobus acidocaldarius/metabolismo , Sulfolobus solfataricus/metabolismo
12.
Nucleic Acids Res ; 47(D1): D542-D549, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30395242

RESUMEN

The BRENDA enzyme database (www.brenda-enzymes.org), recently appointed ELIXIR Core Data Resource, is the main enzyme and enzyme-ligand information system. The core database provides a comprehensive overview on enzymes. A collection of 4.3 million data for ∼84 000 enzymes manually evaluated and extracted from ∼140 000 primary literature references is combined with information obtained by text and data mining, data integration and prediction algorithms. Supplements comprise disease-related data, protein sequences, 3D structures, predicted enzyme locations and genome annotations. Major developments are a revised ligand summary page and the structure search now including a similarity and isomer search. BKMS-react, an integrated database containing known enzyme-catalyzed reactions, is supplemented with further reactions and improved access to pathway connections. In addition to existing enzyme word maps with graphical information of enzyme specific terms, plant word maps have been developed. They show a graphical overview of terms, e.g. enzyme or plant pathogen information, connected to specific plants. An organism summary page showing all relevant information, e.g. taxonomy and synonyms linked to enzyme data, was implemented. Based on a decision by the IUBMB enzyme task force the enzyme class EC 7 has been established for 'translocases', enzymes that catalyze a transport of ions or metabolites across cellular membranes.


Asunto(s)
Bases de Datos de Proteínas , Enzimas/química , Secuencia de Aminoácidos , Enfermedad , Enzimas/análisis , Enzimas/genética , Enzimas/metabolismo , Humanos , Ligandos , Conformación Proteica
13.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124819

RESUMEN

Reduced nitrogen species are key nutrients for biological productivity in the oceans. Ammonium is often present in low and growth-limiting concentrations, albeit peaks occur during collapse of algal blooms or via input from deep sea upwelling and riverine inflow. Autotrophic phytoplankton exploit ammonium peaks by storing nitrogen intracellularly. In contrast, the strategy of heterotrophic bacterioplankton to acquire ammonium is less well understood. This study revealed the marine bacterium Phaeobacter inhibens DSM 17395, a Roseobacter group member, to have already depleted the external ammonium when only ∼⅓ of the ultimately attained biomass is formed. This was paralleled by a three-fold increase in cellular nitrogen levels and rapid buildup of various nitrogen-containing intracellular metabolites (and enzymes for their biosynthesis) and biopolymers (DNA, RNA and proteins). Moreover, nitrogen-rich cells secreted potential RTX proteins and the antibiotic tropodithietic acid, perhaps to competitively secure pulses of external ammonium and to protect themselves from predation. This complex response may ensure growing cells and their descendants exclusive provision with internal nitrogen stocks. This nutritional strategy appears prevalent also in other roseobacters from distant geographical provenances and could provide a new perspective on the distribution of reduced nitrogen in marine environments, i.e. temporary accumulation in bacterioplankton cells.


Asunto(s)
Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , Plancton/metabolismo , Roseobacter/metabolismo , Agua de Mar/microbiología , Compuestos de Amonio/análisis , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Biomasa , Procesos Heterotróficos , Plancton/química , Roseobacter/química , Agua de Mar/química , Tropolona/análogos & derivados , Tropolona/metabolismo
14.
FEBS J ; 285(12): 2193-2204, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498804

RESUMEN

Standards for reporting enzymology data (STRENDA) DB is a validation and storage system for enzyme function data that incorporates the STRENDA Guidelines. It provides authors who are preparing a manuscript with a user-friendly, web-based service that checks automatically enzymology data sets entered in the submission form that they are complete and valid before they are submitted as part of a publication to a journal.


Asunto(s)
Bases de Datos de Proteínas/normas , Pruebas de Enzimas/normas , Enzimas/metabolismo , Interfaz Usuario-Computador , Animales , Bacterias/metabolismo , Pruebas de Enzimas/métodos , Enzimas/química , Enzimas/clasificación , Hongos/metabolismo , Guías como Asunto , Humanos , Difusión de la Información/métodos , Cinética , Publicaciones Periódicas como Asunto , Plantas/metabolismo , Estudios de Validación como Asunto
15.
PLoS One ; 12(10): e0186395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29059219

RESUMEN

For a detailed investigation of the degradation of lysine in Phaeobacter inhibens DSM 17395, stable isotope experiments with uniformly 13C labeled L-lysine were carried out with lysine adapted cells and the metabolites were analyzed using GC/MS and HPLC/MS. A non-targeted stable isotope analysis was used which compares labeled and not labeled samples to determine the Mass Isotopomer Distribution not only for known metabolites but for all labeled compounds in our GC/MS analysis. We show that P. inhibens uses at least two parallel pathways for the first degradation steps of lysine. Further investigations identified L-pipecolate as an L-lysine degradation intermediate in P. inhibens. The analysis of HPLC/MS data as well as the labeling data of tricarboxylic acid (TCA) cycle intermediates show that L-lysine is not only catabolized directly to acetyl-CoA but also via the ethylmalonyl-CoA-pathway, leading to entry points into the TCA cycle via acetyl-CoA, succinyl-CoA, and malate. Altogether the presented data give a detailed insight into the catabolization of L-lysine following the fate of 13C labeled carbon via several ways into the TCA cycle.


Asunto(s)
Lisina/metabolismo , Rhodobacteraceae/metabolismo , Cromatografía Líquida de Alta Presión , Ciclo del Ácido Cítrico , Cromatografía de Gases y Espectrometría de Masas , Isótopos/metabolismo
16.
PLoS One ; 12(7): e0182216, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28750104

RESUMEN

The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.


Asunto(s)
Enzimas/química , Enzimas/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Reproducibilidad de los Resultados
17.
PLoS One ; 12(7): e0180331, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28692669

RESUMEN

Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2-4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Sulfolobus solfataricus/metabolismo , Biología de Sistemas/métodos , Técnicas de Inactivación de Genes , Metaboloma , Método de Montecarlo , Piruvatos/metabolismo , Reproducibilidad de los Resultados , Procesos Estocásticos , Incertidumbre
18.
PLoS One ; 12(5): e0177295, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28481933

RESUMEN

Phaeobacter inhibens DSM 17395, a model organism for marine Roseobacter group, was studied for its response to its own antimicrobial compound tropodithietic acid (TDA). TDA biosynthesis is encoded on the largest extrachromosomal element of P. inhibens, the 262 kb plasmid, whose curation leads to an increased growth and biomass yield. In this study, the plasmid-cured strain was compared to the wild-type strain and to transposon mutants lacking single genes of the TDA biosynthesis. The data show that the growth inhibition of the wild-type strain can be mainly attributed to the TDA produced by P. inhibens itself. Oxygen uptake rates remained constant in all strains but the growth rate dropped in the wild-type which supports the recently proposed mode of TDA action. Metabolome analysis showed no metabolic alterations that could be attributed directly to TDA. Taken together, the growth of P. inhibens is limited by its own antibacterial compound due to a partial destruction of the proton gradient which leads to a higher energetic demand. The universal presence of TDA biosynthesis in genome-sequenced isolates of the genus Phaeobacter shows that there must be a high benefit of TDA for P. inhibens in its ecological niche despite the drawback on its metabolism.


Asunto(s)
Antibacterianos/farmacología , Rhodobacteraceae/crecimiento & desarrollo , Tropolona/análogos & derivados , Antibacterianos/biosíntesis , Metaboloma , Mutación , Oxígeno/metabolismo , Rhodobacteraceae/efectos de los fármacos , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Tropolona/farmacología
19.
FEBS J ; 284(13): 2078-2095, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28497654

RESUMEN

The thermoacidophilic Crenarchaeon Sulfolobus solfataricus is a model organism for archaeal adaptation to extreme environments and renowned for its ability to degrade a broad variety of substrates. It has been well characterised concerning the utilisation of numerous carbohydrates as carbon source. However, its amino acid metabolism, especially the degradation of single amino acids, is not as well understood. In this work, we performed metabolic modelling as well as metabolome, transcriptome and proteome analysis on cells grown on caseinhydrolysate as carbon source in order to draw a comprehensive picture of amino acid metabolism in S. solfataricus P2. We found that 10 out of 16 detectable amino acids are imported from the growth medium. Overall, uptake of glutamate, methionine, leucine, phenylalanine and isoleucine was the highest of all observed amino acids. Our simulations predict an incomplete degradation of leucine and tyrosine to organic acids, and in accordance with this, we detected the export of branched-chain and aromatic organic acids as well as amino acids, ammonium and trehalose into the culture supernatants. The branched-chain amino acids as well as phenylalanine and tyrosine are degraded to organic acids via oxidative Stickland reactions. Such reactions are known for prokaryotes capable of anaerobic growth, but so far have never been observed in an obligate aerobe. Also, 3-methyl-2-butenoate and 2-methyl-2-butenoate are for the first time found as products of modified Stickland reactions for the degradation of branched-chain amino acids. This work presents the first detailed description of branched-chain and aromatic amino acid catabolism in S. solfataricus.


Asunto(s)
Aminoácidos/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Sulfolobus solfataricus/metabolismo , Aerobiosis , Aminoácidos de Cadena Ramificada/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Caseínas/metabolismo , Fermentación , Perfilación de la Expresión Génica/métodos , Metaboloma , Metabolómica/métodos , Oxidación-Reducción , Proteómica/métodos , Sulfolobus solfataricus/genética
20.
Environ Microbiol ; 19(7): 2645-2660, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28371065

RESUMEN

The ability of aerobic anoxygenic photoheterotrophs (AAPs) to gain additional energy from sunlight represents a competitive advantage, especially in conditions where light has easy access or under environmental conditions may change quickly, such as those in the world´s oceans. However, the knowledge about the metabolic consequences of aerobic anoxygenic photosynthesis is very limited. Combining transcriptome and metabolome analyses, isotopic labelling techniques, measurements of growth, oxygen uptake rates, flow cytometry, and a number of other biochemical analytical techniques we obtained a comprehensive overview on the complex adaption of the marine bacterium Dinoroseobacter shibae DFL12T during transition from heterotrophy to photoheterotrophy (growth on succinate). Growth in light was characterized by reduced respiration, a decreased metabolic flux through the tricarboxylic acid (TCA) cycle and the assimilation of CO2 via an enhanced flux through the ethylmalonyl-CoA (EMC) pathway, which was shown to be connected to the serine metabolism. Adaptation to photoheterotrophy is mainly characterized by metabolic reactions caused by a surplus of reducing potential and might depend on genes located in one operon, encoding branching point enzymes of the EMC pathway, serine metabolism and the TCA cycle.


Asunto(s)
Acilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Rhodobacteraceae/metabolismo , Acilcoenzima A/genética , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico , Luz , Fotosíntesis , Rhodobacteraceae/genética , Rhodobacteraceae/efectos de la radiación , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...