Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5117, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433816

RESUMEN

The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient's age from the 12-lead ECG in the CODE study cohort (n = 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79, p < 0.001), whereas those with ECG-age more than 8 years smaller, have a lower mortality rate (HR 0.78, p < 0.001). Similar results are obtained in the external cohorts ELSA-Brasil (n = 14,236) and SaMi-Trop (n = 1,631). Moreover, even for apparent normal ECGs, the predicted ECG-age gap from the chronological age remains a statistically significant risk predictor. These results show that the AI-enabled analysis of the ECG can add prognostic information.


Asunto(s)
Enfermedades Cardiovasculares/mortalidad , Redes Neurales de la Computación , Adolescente , Adulto , Factores de Edad , Anciano , Enfermedades Cardiovasculares/diagnóstico , Niño , Estudios de Cohortes , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Nat Commun ; 11(1): 1760, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273514

RESUMEN

The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. Deep Neural Networks (DNNs) are models composed of stacked transformations that learn tasks by examples. This technology has recently achieved striking success in a variety of task and there are great expectations on how it might improve clinical practice. Here we present a DNN model trained in a dataset with more than 2 million labeled exams analyzed by the Telehealth Network of Minas Gerais and collected under the scope of the CODE (Clinical Outcomes in Digital Electrocardiology) study. The DNN outperform cardiology resident medical doctors in recognizing 6 types of abnormalities in 12-lead ECG recordings, with F1 scores above 80% and specificity over 99%. These results indicate ECG analysis based on DNNs, previously studied in a single-lead setup, generalizes well to 12-lead exams, taking the technology closer to the standard clinical practice.


Asunto(s)
Fibrilación Atrial/diagnóstico , Cardiología/métodos , Aprendizaje Profundo , Electrocardiografía , Redes Neurales de la Computación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/fisiopatología , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA