Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 117(4): 641-52, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18535814

RESUMEN

Genetic diversity of elite breeding material can be increased by introgression of exotic germplasm to ensure long-term selection response. The objective of our study was to develop and characterize the first two rye introgression libraries generated by marker-assisted backcrossing and demonstrate their potential application for improving the baking quality of rye. Starting from a cross between inbred line L2053-N (recurrent parent) and a heterozygous Iranian primitive population Altevogt 14160 (donor) two backcross (BC) and three selfing generations were performed to establish introgression libraries A and B. Amplified fragment length polymorphisms (AFLP markers) and simple sequences repeats (SSRs) were employed to select and characterize candidate introgression lines (pre-ILs) from BC(1) to BC2S3. The two introgression libraries comprise each 40 BC2S3 pre-ILs. For analyzing the phenotypic effects of the exotic donor chromosome segment (DCS) we evaluated the per se performance for pentosan and starch content in replicated field trials at each of four locations in 2005 and 2006. Introgression library A and B cover 74 and 59% of the total donor genome, respectively. The pre-ILs contained mostly two to four homozygous DCS, with a mean length of 12.9 cM (A) and 10.0 cM (B). We detected eight (A) and nine (B) pre-ILs with a significant (P<0.05) higher pentosan content and two pre-ILs (B) with a significant (P<0.05) higher starch content than the elite recurrent parent. Thus, our results indicate that exotic genetic resources in rye carry favorable alleles for baking quality traits, which can be exploited for improving the elite breeding material by marker-assisted selection (MAS). These introgression libraries can substantially foster rye breeding programs and provide a promising opportunity to proceed towards functional genomics.


Asunto(s)
Biblioteca de Genes , Genoma de Planta , Secale/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Cruzamiento , Mapeo Cromosómico , Marcadores Genéticos , Genómica , Hibridación Genética , Irán , Repeticiones de Minisatélite
2.
Theor Appl Genet ; 116(3): 363-72, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18040658

RESUMEN

Clubroot caused by the obligate biotrophic protist Plasmodiophora brassicae is a major disease of Brassica species. Clubroot resistances introduced from B. oleracea var. 'Böhmerwaldkohl' and resistance from B. rapa ECD-04 were genetically mapped in oilseed rape (B. napus L.). A doubled haploid (DH) population of rape seed was developed by crossing a resistant DH-line derived from a resynthesized B. napus with the susceptible cultivar 'Express'. The DH population was tested in the greenhouse against seven P. brassicae isolates showing low and high virulence toward B. oleracea or/and B. rapa. DH-lines with highest or lowest disease scores were used in a bulked segregant analysis (BSA), and 43 polymorphic AFLPs were identified. A genetic map of the whole genome was constructed using 338 AFLP and 156 anchored SSR markers. Nineteen QTL were detected on chromosomes N02, N03, N08, N13, N15, N16 and N19 giving resistance to seven different isolates. Race-specific effects were observed for all QTL, none of the QTL conferred resistance to all isolates. The phenotypic variance explained by the respective QTL ranged between 10.3 and 67.5%. All QTL could be assigned to both ancestral genomes of B. napus. In contrast to previous reports, a clear differentiation into major QTL from B. rapa and minor QTL from B. oleracea could not be found. Composite interval mapping confirmed the linkage relationships determined by BSA, thus demonstrating that markers for oligogenic traits can be selected by merely testing the distributional extremes of a segregating population.


Asunto(s)
Brassica napus/genética , Brassica napus/parasitología , Genes de Plantas/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Mapeo Cromosómico , Segregación Cromosómica , Inmunidad Innata/inmunología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Sitios de Carácter Cuantitativo/genética
3.
Theor Appl Genet ; 115(5): 617-25, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17607557

RESUMEN

Fusarium head blight (FHB) of wheat has become a serious threat to wheat crops in numerous countries. In addition to loss of yield and quality, this disease is of primary importance because of the contamination of grain with mycotoxins such as deoxynivalenol (DON). The Swiss winter cultivar Arina possesses significant resistance to FHB. The objective of this study was to map quantitative trait loci (QTL) for resistance to FHB, DON accumulation and associated traits in grain in a double haploid (DH) population from a cross between Arina and the FHB susceptible UK variety Riband. FHB resistance was assessed in five trials across different years and locations. Ten QTL for resistance to FHB or associated traits were detected across the trials, with QTL derived from both parents. Very few of the QTL detected in this study were coincident with those reported by authors of two other studies of FHB resistance in Arina. It is concluded that the FHB resistance of Arina, like that of the other European winter wheat varieties studied to date, is conferred by several genes of moderate effect making it difficult to exploit in marker-assisted selection breeding programmes. The most significant and stable QTL for FHB resistance was on chromosome 4D and co-localised with the Rht-D1 locus for height. This association appears to be due to linkage of deleterious genes to the Rht-D1b (Rht2) semi-dwarfing allele rather than differences in height per se. This association may compromise efforts to enhance FHB resistance in breeding programmes using germplasm containing this allele.


Asunto(s)
Fusarium/fisiología , Micotoxinas/metabolismo , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Tricotecenos/metabolismo , Triticum/genética , Triticum/microbiología , Área Bajo la Curva , Mapeo Cromosómico , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Estaciones del Año , Triticum/anatomía & histología
4.
Theor Appl Genet ; 110(5): 865-80, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15719212

RESUMEN

A population of 96 doubled haploid lines (DHLs) was prepared from F1 plants of the hexaploid wheat cross Chinese Spring x SQ1 (a high abscisic acid-expressing breeding line) and was mapped with 567 RFLP, AFLP, SSR, morphological and biochemical markers covering all 21 chromosomes, with a total map length of 3,522 cM. Although the map lengths for each genome were very similar, the D genome had only half the markers of the other two genomes. The map was used to identify quantitative trait loci (QTLs) for yield and yield components from a combination of 24 site x treatment x year combinations, including nutrient stress, drought stress and salt stress treatments. Although yield QTLs were widely distributed around the genome, 17 clusters of yield QTLs from five or more trials were identified: two on group 1 chromosomes, one each on group 2 and group 3, five on group 4, four on group 5, one on group 6 and three on group 7. The strongest yield QTL effects were on chromosomes 7AL and 7BL, due mainly to variation in grain numbers per ear. Three of the yield QTL clusters were largely site-specific, while four clusters were largely associated with one or other of the stress treatments. Three of the yield QTL clusters were coincident with the dwarfing gene Rht-B1 on 4BS and with the vernalisation genes Vrn-A1 on 5AL and Vrn-D1 on 5DL. Yields of each DHL were calculated for trial mean yields of 6 g plant(-1) and 2 g plant(-1) (equivalent to about 8 t ha(-1) and 2.5 t ha(-1), respectively), representing optimum and moderately stressed conditions. Analyses of these yield estimates using interval mapping confirmed the group-7 effects on yield and, at 2 g plant(-1), identified two additional major yield QTLs on chromosomes 1D and 5A. Many of the yield QTL clusters corresponded with QTLs already reported in wheat and, on the basis of comparative genetics, also in rice. The implications of these results for improving wheat yield stability are discussed.


Asunto(s)
Mapeo Cromosómico , Ambiente , Poliploidía , Sitios de Carácter Cuantitativo , Triticum/genética , Biomasa , Cruzamientos Genéticos , Repeticiones de Minisatélite/genética , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Longitud del Fragmento de Restricción , Triticum/crecimiento & desarrollo
5.
Theor Appl Genet ; 109(1): 215-24, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-14997302

RESUMEN

Fusarium head blight (FHB) is a destructive disease of wheat. The objective of this study was to characterise the FHB resistance of the Brazilian spring wheat cultivar Frontana through molecular mapping. A population of 210 doubled-haploid lines from a cross of Frontana (partially resistant) and Remus (susceptible) was evaluated for FHB resistance during three seasons. Spray and single-spikelet inoculations were applied. The severity, incidence and spread of the disease were assessed by visual scoring. The population was genotyped with 566 DNA markers. The major QTL effect associated with FHB resistance mapped to chromosome 3A near the centromere, explaining 16% of the phenotypic variation for disease severity over 3 years. The most likely position is in the Xgwm720-Xdupw227 interval. The genomic region on 3A was significantly associated with FHB severity and incidence in all years evaluated, but not with FHB spread, indicating the prominent contribution of this QTL to resistance against initial infection. The map interval Xgwm129-Xbarc197 on chromosome 5A also showed consistent association with FHB severity and accounted for 9% of the phenotypic variation. In addition, smaller effects for FHB severity were identified on chromosomes 1B, 2A, 2B, 4B, 5A and 6B in single years. Individual QTLs for resistance to FHB spread accounted for less than 10% of the variation in trait expression. The present study indicates that FHB resistance of Frontana primarily inhibits fungal penetration (type I resistance), but has a minor effect on fungal spread after infection (type II resistance).


Asunto(s)
Mapeo Cromosómico , Fusarium , Inmunidad Innata/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Análisis de Varianza , Brasil , Cruzamientos Genéticos , Marcadores Genéticos/genética , Fenotipo , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Especificidad de la Especie
6.
Genome ; 40(2): 171-5, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18464815

RESUMEN

A digoxigenin-labelled 5S rDNA probe containing the 5S rRNA gene and the adjacent intergenic spacer was used for in situ hybridization to metaphase and interphase chromosomes of a trisomic stock from sugar beet (Beta vulgaris L.). Three chromosomes of primary trisomic line IV (T. Butterfass. Z. Bot. 52: 46-77. 1964) revealed signals close to the centromeres. Polymorphisms of 5S rDNA repeats in a segregating population were used to map genetically the 5S rRNA genes within a cluster of markers in linkage group II of sugar beet. The concentration of genetic markers around the centromere presumably reflects the suppressed recombination frequency in centromeric regions. The correlation of physical and genetic data allowed the assignment of a linkage group to sugar beet chromosome IV according to line IV of the primary trisomics.

7.
FEBS Lett ; 395(1): 58-62, 1996 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-8849689

RESUMEN

Thylakoid membranes of chloroplasts are composed of approx. 75 polypeptide species. Nearly 60% originate in nuclear genes, the remainder in plastid genes. In order to localize representatives of the nuclear-encoded gene complement in a eukaryotic plant genome (sugar beet, Beta vulgaris L.), we have investigated the RFLP patterns of 21 cDNAs from spinach that code for thylakoid proteins or proteins peripherally associated with thylakoid membranes. Differences in gene dosage were noted between both related species. Polymorphism was found for 12 cDNA loci in a segregating sugar beet F2 population. These loci were mapped along with genomic RFLP, isozyme, and morphological markers, and shown to be distributed in six of the nine sugar beet linkage groups. The lack of positional clustering even of genes that encode components of the same supramolecular membrane assembly is commensurate with phylogenetically independent gene translocations from the plastid (endosymbiont), and raises the question of the functional integration of various translocated genes into common signal transduction chains.


Asunto(s)
Núcleo Celular/genética , Cloroplastos , Genes de Plantas/genética , Proteínas de la Membrana/genética , Verduras/genética , Mapeo Cromosómico , ADN Complementario/genética , ADN de Plantas , Dosificación de Gen , Ligamiento Genético , Membranas Intracelulares , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas de Plantas/genética , Polimorfismo de Longitud del Fragmento de Restricción , Spinacia oleracea/genética
8.
Theor Appl Genet ; 92(8): 991-7, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24166626

RESUMEN

Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 (pro-1)) and B. webbiana (Hs1 (web-1), Hs2 (web-7)) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0-4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.

9.
Theor Appl Genet ; 86(5): 629-36, 1993 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24193713

RESUMEN

We have applied a refined microdissection procedure to create a plasmid library of the barley (Hordeum vulgare L.) chromosome arm 1HS. The technical improvements involved include synchronization of meristematic root tissue, a metaphase drop-spread technique, paraffin protection of the collection drop to avoid evaporation, and a motorized and programmable microscope stage. Thirteen readily-discernible telocentric chromosomes have been excised from metaphases of synchronized root-tip mitoses. After lysis in a collection drop (2 nl), the DNA was purified, restricted withRsaI, ligated into a vector containing universal sequencing primers, and amplified by the polymerase chain reaction. Finally, the amplified DNA was cloned into a standard plasmid vector. The size of the library was estimated to be approximately 44,000 recombinant plasmids, of which approximately 13% can be utilized for RFLP analysis. Tandem repetitive probes could be rapidly excluded from further analysis after colony hybridization with labelled total barley DNA. Analysis of 552 recombinant plasmids established that: (1) the insert sizes ranged between 70 and 1150 bp with a mean of 250 bp, (2) approximately 60% of the clones contained highly repetitive sequences, and (3) all single- or low-copy probes tested originate from chromosome 1HS. Four probes were genetically mapped, using an interspecificH. vulgare xH. spontaneum F2 population. One of these probes was found to be closely linked to theMla locus conferring mildew resistance.

10.
Theor Appl Genet ; 83(2): 250-6, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24202366

RESUMEN

In order to construct an RFLP map of barley, two populations were analyzed using 251 genomic and cDNA markers: one population comprised 71 F1 antherderived double haploid (DH) individuals of an intraspecific cross (IGRI x FRANKA), and the other 135 individuals of an interspecific F2/F3 progeny (VADA x H. spontaneum). The distribution of nonrepetitive clones over the seven barley chromosomes revealed a maximum for chromosome 2H and a minimum for 6H. The polymorphism of the interspecific progeny (76%) clearly exceeded that of the intraspecific progeny (26%) although, based on their pedigrees, IGRI and FRANKA are only distantly related. The contribution of individual chromosomes of the DH parents to the overall polymorphism varied between 8% and 50%. A significant portion (44% versus 10% of the interspecific progeny) of the markers mapped on the DH offspring showed distorted segregation, caused mainly by the prevalence of variants originating from the parent that better responded to in vitro culture (IGRI). In contrast to the interspecific map, probes displaying skewed segregation were clustered on the DH map on discrete segments. The colinear arrangement of both maps covers a distance of 1,453 cM and identifies regions of varying map distances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA