RESUMEN
The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 microg/kg) reduced mean arterial pressure from 88 +/- 12 to 42 +/- 7 mmHg and increased heart rate from 335 +/- 38 to 402 +/- 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 microg/kg infused over a period of 5 min) from 35 +/- 3 to 10 +/- 2% of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.
Asunto(s)
Bradiquinina/análogos & derivados , Cardiotónicos/uso terapéutico , Cininas/efectos de los fármacos , Infarto del Miocardio/prevención & control , Vasodilatadores/uso terapéutico , Enfermedad Aguda , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Bradiquinina/uso terapéutico , Captopril/farmacología , Pollos , Modelos Animales de Enfermedad , Precondicionamiento Isquémico Miocárdico , Cininas/sangre , Cininas/fisiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Cuidados Preoperatorios , Resistencia Vascular/efectos de los fármacosRESUMEN
The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 µg/kg) reduced mean arterial pressure from 88 ± 12 to 42 ± 7 mmHg and increased heart rate from 335 ± 38 to 402 ± 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 µg/kg infused over a period of 5 min) from 35 ± 3 to 10 ± 2 percent of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.
Asunto(s)
Animales , Bradiquinina/análogos & derivados , Cardiotónicos/uso terapéutico , Cininas/efectos de los fármacos , Infarto del Miocardio/prevención & control , Vasodilatadores/uso terapéutico , Enfermedad Aguda , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Presión Sanguínea/efectos de los fármacos , Bradiquinina/uso terapéutico , Pollos , Captopril/farmacología , Modelos Animales de Enfermedad , Precondicionamiento Isquémico Miocárdico , Cininas/sangre , Cininas/fisiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Cuidados Preoperatorios , Resistencia Vascular/efectos de los fármacosRESUMEN
Ablation of the area postrema/caudal nucleus of the tractus solitarius (NTS) complex increases sodium intake, but the effect of selective lesions of the caudal NTS is not known. We measured depletion-induced sodium intake in rats with electrolytic lesions of the commissural NTS that spared the area postrema. One day after the lesion, rats were depleted of sodium with furosemide (10 mg/kg body weight, sc) and then had access to water and a sodium-deficient diet for 24 h when 1.8 percent NaCl was offered. Water and saline intakes were measured for 2 h. Saline intake was higher in lesioned than in sham-lesioned rats (mean ± SEM: 20 ± 2 vs 11 ± 3 mL/2 h, P < 0.05, N = 6-7). Saline intake remained elevated in lesioned rats when the tests were repeated 6 and 14 days after the lesion, and water intake in these two tests was increased as well. Water intake seemed to be secondary to saline intake both in lesioned and in sham-lesioned rats. A second group of rats was offered 10 percent sucrose for 2 h/day before and 2, 7, and 15 days after lesion. Sucrose intake in lesioned rats was higher than in sham-lesioned rats only 7 days after lesioning. A possible explanation for the increased saline intake in rats with commissural NTS lesions could be a reduced gastrointestinal feedback inhibition. The commissural NTS is probably part of a pathway for inhibitory control of sodium intake that also involves the area postrema and the parabrachial nucleus.
Asunto(s)
Animales , Masculino , Ratas , Apetito/fisiología , Ingestión de Líquidos/fisiología , Cloruro de Sodio Dietético/administración & dosificación , Núcleo Solitario/lesiones , Furosemida/farmacología , Ratas Wistar , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacologíaRESUMEN
Ablation of the area postrema/caudal nucleus of the tractus solitarius (NTS) complex increases sodium intake, but the effect of selective lesions of the caudal NTS is not known. We measured depletion-induced sodium intake in rats with electrolytic lesions of the commissural NTS that spared the area postrema. One day after the lesion, rats were depleted of sodium with furosemide (10 mg/kg body weight, sc) and then had access to water and a sodium-deficient diet for 24 h when 1.8% NaCl was offered. Water and saline intakes were measured for 2 h. Saline intake was higher in lesioned than in sham-lesioned rats (mean +/- SEM: 20 +/- 2 vs 11 +/- 3 mL/2 h, P < 0.05, N = 6-7). Saline intake remained elevated in lesioned rats when the tests were repeated 6 and 14 days after the lesion, and water intake in these two tests was increased as well. Water intake seemed to be secondary to saline intake both in lesioned and in sham-lesioned rats. A second group of rats was offered 10% sucrose for 2 h/day before and 2, 7, and 15 days after lesion. Sucrose intake in lesioned rats was higher than in sham-lesioned rats only 7 days after lesioning. A possible explanation for the increased saline intake in rats with commissural NTS lesions could be a reduced gastrointestinal feedback inhibition. The commissural NTS is probably part of a pathway for inhibitory control of sodium intake that also involves the area postrema and the parabrachial nucleus.
Asunto(s)
Apetito/fisiología , Ingestión de Líquidos/fisiología , Cloruro de Sodio Dietético/administración & dosificación , Núcleo Solitario/lesiones , Animales , Furosemida/farmacología , Masculino , Ratas , Ratas Wistar , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacologíaRESUMEN
To analyse the effect of ageing on the projection of the anterior interposed nucleus to the red nucleus, we injected the retrograde tracer fluorogold in the red nucleus of 3-, 6- and 12-month-old mice. The number of labelled neurones in the anterior interposed nucleus fell by 9% between 3 and 6 months and by another 9% between 6 and 12 months (all P < 0.001). This suggests that loss of neurones from the cerebellar nuclei starts well before old age.