Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 126(22): 3502-3510, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35617126

RESUMEN

The structures of platinum cluster anions Pt6--Pt13- have been investigated by trapped ion electron diffraction. Structures were assigned by comparing experimental and simulated scattering functions using candidate structures obtained by density functional theory computations, including spin-orbit coupling. We find a structural evolution from planar structures (Pt6-, Pt7-) and amorphous-like structures (Pt7--Pt9-) to structures based on distorted tetrahedra (Pt9--Pt11-). Finally, Pt12- and Pt13- are based on hcp fragments. While the structural parameters are well described by density functional theory computations for all clusters studied, the predicted lowest energy structure is found in the experiment only for Pt6-. For larger clusters, higher energy isomers are necessary to obtain a fit to the scattering data.

2.
Angew Chem Int Ed Engl ; 60(43): 23365-23372, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34415105

RESUMEN

Combining phase-dependent photoluminescence (PL) measurements and quantum chemical calculations is a powerful approach to help understand the influence of the molecular surroundings on the PL properties. Herein, a phosphine functionalized amidinate was used to synthesize a recently presented bimetallic gold complex, featuring an unusual charge separation. The latter was subsequently used as metalloligand to yield heterotetrametallic complexes with an Au-M-M-Au "molecular wire" arrangement (M=Cu, Ag, Au) featuring metallophilic interactions. All compounds show bright phosphorescence in the solid state, also at ambient temperature. The effect of the molecular environment on the PL was studied in detail for these tetrametallic complexes by comparative measurements in solution, in the solid state and in the gas phase and contrasted to time-dependent density functional theory computations.

3.
J Phys Chem A ; 125(15): 3135-3145, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33830770

RESUMEN

We present a study of the structural evolution of tantalum cluster anions Tan-, 6 ≤ n ≤ 13 using a combination of trapped ion electron diffraction (TIED) experiments with a variety of electronic structure methods. A genetic algorithm has been employed to establish a set of likely structures for each cluster, their geometries and energetics have been studied by density functional theory (DFT), random phase approximation, and two-component (2C) DFT methods, which include spin-orbit coupling. We find octahedral structures for Ta6- and Ta8- as well as structures based on the pentagonal bipyramid (Ta7- and Ta9-). Ta10--Ta12- are defective icosahedral structures and Ta13- is a distorted icosahedron. For most clusters, we find a good agreement between the theoretically predicted ground-state structures, especially those determined by the 2C method and the TIED results.

4.
J Phys Chem A ; 123(51): 10940-10946, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31769986

RESUMEN

We present a study of the structural evolution of palladium cluster anions in a size range from 55 to 147 atoms using a combination of trapped ion electron diffraction and density functional theory computations. We show that Pdn- clusters (n = 55, 65, 75, 85, 95, 105, and 147) change from an icosahedral motif at Pd55- to the bulk fcc motif at Pd147-. This size-dependent structure transition is probed experimentally at a temperature of 95 K and characterized by a continuously increasing fraction of fcc isomers over the considered size range showing a crossover to the fcc motif at n ≈ 90.

5.
Chemphyschem ; 19(22): 3050-3060, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30204284

RESUMEN

Lanthanide ions (DyIII , EuIII ) are stabilized by coordination with two Schiff base ligands in compounds [Dy{H3 L}2 ](NO3 )(EtOH)(H2 O)8 (1) and [Eu{H3 L}2 ](NO3 )(H2 O)8 (3) (H4 L, 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid). The latter is reported here for the first time. Both luminescence and ultrafast photodynamics after photoexcitation via a ligand absorption band (∼400 nm) have been studied. In solution, only the [Eu{H3 L}2 ]+ ([3]+ ) complex displays the typical lanthanide emission lines, whereas in gas phase both, [Dy{H3 L}2 ]+ ([1]+ ) and [3]+ , show their corresponding transitions depending on excitation energy. The ultrafast excited state dynamics, obtained in gas phase and in solution, are assigned to excited state intramolecular proton transfer processes in the ligands. The antenna ligand moiety of these complexes provides pockets for stabilization of two MnII ions so that we additionally investigated the photophysical behavior of the corresponding tri-nuclear (NHEt3 )2 [Ln{MnL}2 ](ClO4 )(H2 O)2 (Ln=DyIII , EuIII ) compounds (2, 4). Interestingly, the related complexes do not show lanthanide emission, neither in solution nor in gas phase. Transient data in solution and gas phase suggests an efficient quenching of the ligand's electronically excited state by strong interaction with the MnII ions. This effect could possibly be developed further into a design principle for luminescence-based sensing devices for metal cations.

6.
J Phys Chem A ; 122(9): 2461-2467, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451792

RESUMEN

The gas-phase laser-induced photoluminescence of cationic mononuclear gadolinium and lutetium complexes involving two 9-oxophenalen-1-one ligands is reported. Performing measurements at a temperature of 83 K enables us to resolve vibronic transitions. Via comparison to Franck-Condon computations, the main vibrational contributions to the ligand-centered phosphorescence are determined to involve rocking, wagging, and stretching of the 9-oxophenalen-1-one-lanthanoid coordination in the low-energy range, intraligand bending, and stretching in the medium- to high-energy range, rocking of the carbonyl and methine groups, and C-H stretching beyond. Whereas Franck-Condon calculations based on density-functional harmonic frequency computations reproduce the main features of the vibrationally resolved emission spectra, the absolute transition energies as determined by density functional theory are off by several thousand wavenumbers. This discrepancy is found to remain at higher computational levels. The relative energy of the Gd(III) and Lu(III) emission bands is only reproduced at the coupled-cluster singles and doubles level and beyond.

7.
Phys Chem Chem Phys ; 19(8): 6105-6112, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28191564

RESUMEN

We report a combined investigation of europium(iii)9-oxo-phenalen-1-one (PLN) coordination complexes, [Eu(PLN)4AE]+ with AE = Mg, Ca, and Sr, using gas-phase photoluminescence, trapped ion-mobility spectrometry and density-functional computations. In order to sort out the structural impact of the alkali earth dications on the photoluminescence spectra, the experimental data are compared to the predicted ligand-field splittings as well as to the collision cross-sections for different isomers of [Eu(PLN)4AE]+. The best fitting interpretation is that one isomer family predominantly contributes to the recorded luminescence. The present work demonstrates the complexity of the coordination patterns of multicenter lanthanoid chelates involved in dynamical equilibria and the pertinence of using isolation techniques to elucidate their photophysical properties.

8.
Inorg Chem ; 55(7): 3316-23, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26974169

RESUMEN

Gas-phase photoluminescence measurements involving mass-spectrometric techniques enable determination of the properties of selected molecular systems with knowledge of their exact composition and unaffected by matrix effects such as solvent interactions or crystal packing. The resulting reduced complexity facilitates a comparison with theory. Herein, we provide a detailed report of the intrinsic luminescence properties of nonanuclear europium(III) and gadolinium(III) 9-hydroxyphenalen-1-one (HPLN) hydroxo complexes. Luminescence spectra of [Eu9(PLN)16(OH)10](+) ions reveal an europium-centered emission dominated by a 4-fold split Eu(III) hypersensitive transition, while photoluminescence lifetime measurements for both complexes support an efficient europium sensitization via a PLN-centered triplet-state manifold. The combination of gas-phase measurements with density functional theory computations and ligand-field theory is used to discuss the antiprismatic core structure of the complexes and to shed light on the energy-transfer mechanism. This methodology is also employed to fit a new set of parameters, which improves the accuracy of ligand-field computations of Eu(III) electronic transitions for gas-phase species.

9.
Anal Chem ; 87(23): 11901-6, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26553589

RESUMEN

An apparatus is presented which combines nanoelectrospray ionization for isolation of large molecular ions from solution, mass-to-charge ratio selection in gas-phase, low-energy-ion-beam deposition into a (co-condensed) inert gas matrix and UV laser-induced visible-region photoluminescence (PL) of the matrix isolated ions. Performance is tested by depositing three different types of lanthanoid diketonate cations including also a dissociation product species not directly accessible by chemical synthesis. For these strongly photoluminescent ions, accumulation of some femto- to picomoles in a neon matrix (over a time scale of tens of minutes to several hours) is sufficient to obtain well-resolved dispersed emission spectra. We have ruled out contributions to these spectra due to charge neutralization or fragmentation during deposition by also acquiring photoluminescence spectra of the same ionic species in the gas phase.

10.
J Chem Phys ; 142(2): 024319, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25591365

RESUMEN

The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru8(-)-Ru12(-) have simple cubic structures, Ru13(-)-Ru16(-) form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru17(-), we find hexagonal close packed stacking, whereas octahedral structures occur for Ru18(-)-Ru20(-). Our calculations also predict simple cubic structures for the smaller clusters Ru4(-)-Ru7(-), which were not accessible to electron diffraction measurements.

11.
J Phys Chem A ; 118(21): 3787-3794, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24786781

RESUMEN

The photophysics of chromophores is strongly influenced by their environment. Solvation, charge state, and adduct formation significantly affect ground and excited state energetics and dynamics. The present study reports on fluorescence emission of rhodamine B cations (RhBH+) and derivatives in the gas phase. Substitution of the acidic proton of RhBH+ by alkali metal cations, M+, ranging from lithium to cesium leads to significant and systematic blue shifts of the emission. The gas-phase structures and singlet transition energies of RhBH+ and RhBM+, M = Li, Na, K, Rb, and Cs, were investigated using Hartree-Fock theory, density functional methods, second-order Møller-Plesset perturbation theory, and the second-order approximate coupled-cluster model CC2. Comparison of experimental and theoretical results highlights the need for improved quantum chemical methods, while the hypsochromic shift observed upon substitution appears best explained by the Stark effect due to the inhomogeneous electric field generated by the alkali ions.

12.
Chemphyschem ; 15(5): 862-5, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24616205

RESUMEN

We describe the first direct structural characterization of medium-sized ruthenium clusters (Ru19 (-) , Ru28 (-) , Ru38 (-) , and Ru44 (-) ) by using a combination of trapped ion electron diffraction and density functional theory. We find close-packed structures based on octahedral geometries: Ru19 (-) and Ru44 (-) are closed-shell octahedra whereas Ru28 (-) is a double octahedron. In the case of Ru38 (-) , instead of a truncated octahedron we obtain evidence for lower symmetry structures containing a reentrant surface.

13.
J Phys Chem Lett ; 5(10): 1727-31, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26270374

RESUMEN

Gas-phase measurements using mass-spectrometric techniques allow determination of the luminescence properties of selected molecular systems with knowledge of their exact composition. Furthermore, isolated luminophores are unaffected by matrix effects like solvent interactions or crystal packing. As a result, the system complexity is reduced relative to the condensed phase and a direct comparison with theory is facilitated. Herein, we report the intrinsic luminescence properties of nonanuclear europium(III) and gadolinium(III) 9-hydroxyphenalen-1-one (HPLN)-hydroxo complexes. Luminescence spectra of [Eu9(PLN)16(OH)10](+) ions reveal an europium-centered emission dominated by a 4-fold split Eu(III) hypersensitive transition. The corresponding Gd(III) complex, [Gd9(PLN)16(OH)10](+), shows a broad emission from a ligand based triplet state with an onset of about 1000 wavenumbers in excess of the europium emission. As supported by photoluminescence lifetime measurements for both complexes, we deduce an efficient europium sensitization via PLN-based triplet states. The luminescence spectra of the complexes are discussed in terms of a square antiprismatic europium/gadolinium core structure as suggested by density functional computations.

14.
J Phys Chem A ; 118(1): 94-102, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24341518

RESUMEN

We present gas-phase dispersed photoluminescence spectra of europium(III) 9-hydroxyphenalen-1-one (HPLN) complexes forming adducts with alkali metal ions ([Eu(PLN)3M](+) with M = Li, Na, K, Rb, and Cs) confined in a quadrupole ion trap for study. The mass selected alkali metal cation adducts display a split hypersensitive (5)D0 → (7)F2 Eu(3+) emission band. One of the two emission components shows a linear dependence on the radius of the alkali metal cation whereas the other component displays a quadratic dependence thereon. In addition, the relative intensities of both components invert in the same order. The experimental results are interpreted with the support of density functional calculations and Judd-Ofelt theory, yielding also structural information on the isolated [Eu(PLN)3M](+) chromophores.

15.
Angew Chem Int Ed Engl ; 52(23): 6102-5, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23657978

RESUMEN

Correlation of cluster and bulk structure: Electron-diffraction measurements of homonuclear 55-atom transition-metal cluster anions covering essentially all 3d and 4d elements show only four main structure families. Elements with the same bulk lattice morphology generally have a common cluster structure type. The cluster structure types differ in maximum atomic coordination numbers in analogy to the coordination numbers in the corresponding bulk lattices.

16.
Phys Chem Chem Phys ; 15(21): 8162-70, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23603945

RESUMEN

We have investigated the gas phase triplet state lifetimes and dispersed fluorescence spectra of several types of rhodamine cations confined in a quadrupole ion trap and thermalized to 85 K. The measured triplet lifetimes of rhodamine cations Rh6G(+), Rh575(+), RhB(+), and Rh101(+) are found to be on the order of seconds, several orders of magnitude longer than those typically observed for the same dyes in optical condensed phase measurements. In addition dispersed fluorescence emission spectra in the gas phase at 85 K have been measured. The experimental gas phase results as well as solution measurements are compared to density functional calculations and the previous literature. Possible explanations for the discrepancy of gas and solution phase triplet lifetimes are discussed.

17.
J Chem Phys ; 136(15): 154309, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22519328

RESUMEN

The structures of bismuth cluster cations in the range between 4 and 14 atoms have been assigned by a combination of gas phase ion mobility and trapped ion electron diffraction measurements together with density functional theory calculations. We find that above 8 atoms the clusters adopt prolate structures with coordination numbers between 3 and 4 and highly directional bonds. These open structures are more like those seen for clusters of semiconducting-in-bulk elements (such as silicon) rather than resembling the compact structures typical for clusters of metallic-in-bulk elements. An accurate description of bismuth clusters at the level of density functional theory, in particular of fragmentation pathways and dissociation energetics, requires taking spin-orbit coupling into account. For n = 11 we infer that low energy isomers can have fragmentation thresholds comparable to their structural interconversion barriers. This gives rise to experimental isomer distributions which are dependent on formation and annealing histories.

18.
Phys Chem Chem Phys ; 14(1): 234-45, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22071636

RESUMEN

The structures of medium sized tin cluster anions Sn(n)(-) (n = 16-29) were determined by a combination of density functional theory, trapped ion electron diffraction and collision induced dissociation (CID). Mostly prolate structures were found with a structural motif based on only three repeatedly appearing subunit clusters, the Sn(7) pentagonal bipyramid, the Sn(9) tricapped trigonal prism and the Sn(10) bicapped tetragonal antiprism. Sn(16)(-) and Sn(17)(-) are composed of two face connected subunits. In Sn(18)(-)-Sn(20)(-) the subunits form cluster dimers. For Sn(21)(-)-Sn(23)(-) additional tin atoms are inserted between the building blocks. Sn(24)(-) and Sn(25)(-) are composed of a Sn(9) or Sn(10) connected to a Sn(15) subunit, which closely resembles the ground state of Sn(15)(-). Finally, in the larger clusters Sn(26)(-)-Sn(29)(-) additional bridging atoms again connect the building blocks. The CID experiments reveal fission as the main fragmentation channel for all investigated cluster sizes. This rather unexpected "pearl-chain" cluster growth mode is rationalized by the extraordinary stability of the building blocks.

19.
J Chem Phys ; 133(22): 224302, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21171684

RESUMEN

We employ a combination of ion mobility measurements and an unbiased systematic structure search with density functional theory methods to study structure and energetics of gas phase tin cluster cations, Sn(n)(+), in the range of n = 3-15. For Sn(13)(+) we also carry out trapped ion electron diffraction measurements to ascertain the results obtained by the other procedures. The structures for the smaller systems are most easily described by idealized point group symmetries, although they are all Jahn-Teller distorted: D(3h) (trigonal bipyramid), D(4h) (octahedron), D(5h) (pentagonal bipyramid) for n = 5, 6, and 7. For the larger systems we find capped D(5h) for Sn(8)(+) and Sn(9)(+), D(3h) (tricapped trigonal prism) and D(4d) (bicapped squared antiprism) plus adatoms for n = 10, 11, 14, and 15. A centered icosahedron with a peripheral atom removed is the dominant motif in Sn(12)(+). For Sn(13)(+) the calculations predict a family of virtually isoenergetic isomers, an icosahedron and slightly distorted icosahedra, which are about 0.25 eV below two C(1) structures. The experiments indicate the presence of two structures, one from the I(h) family and a prolate C(1) isomer based on fused deltahedral moieties.

20.
J Chem Phys ; 132(21): 211102, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20528010

RESUMEN

The gas phase structures of tin cluster anions Sn(n)(-) have been studied by a combination of trapped ion electron diffraction and density functional theory calculations. In the size range of n=18-25 these clusters comprise dimers of stable subunits. In particular Sn(18)(-) and Sn(20)(-) are homodimers of Sn(9) and Sn(10) subunits, respectively. In Sn(23)(-) two Sn(10) units are linked by three additional bridging atoms and Sn(25)(-) is a heterodimer of Sn(10) and Sn(15) subunits. This rather unexpected growth mode is rationalized by the extraordinary stability of the building blocks Sn(9), Sn(10), and Sn(15).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA