Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Oncol ; 49: 102108, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39178575

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for 85 % of all lung cancers. In NSCLC, 10-20 % of Caucasian patients and 30-50 % of Asian patients have tumors with activating mutations in the Epidermal Growth Factor Receptor (EGFR). A high percentage of these patients exhibit favorable responses to treatment with tyrosine kinase inhibitors (TKI). Unfortunately, a majority of these patients develop therapeutic resistance with progression free survival lasting 9-18 months. The mechanisms that underlie the tumorigenic effects of EGFR and the ability of NSCLC to develop resistance to TKI therapies, however, are poorly understood. Here we demonstrate that CHI3L1 is produced by EGFR activation of normal epithelial cells, transformed epithelial cells with wild type EGFR and cells with cancer-associated, activating EGFR mutations. We also demonstrate that CHI3L1 auto-induces itself and feeds back to stimulate EGFR and its ligands via a STAT3-dependent mechanism(s). Highly specific antibodies against CHI3L1 (anti-CHI3L1/FRG) and TKI, individually and in combination, abrogated the effects of EGFR activation on CHI3L1 and the ability of CHI3L1 to stimulate the EGFR axis. Anti-CHI3L1 also interacted with osimertinib to reverse TKI therapeutic resistance and induce tumor cell death and inhibit pulmonary metastasis while stimulating tumor suppressor genes including KEAP1. CHI3L1 is a downstream target of EGFR that feeds back to stimulate and activate the EGFR axis. Anti-CHI3L1 is an exciting potential therapeutic for EGFR mutant NSCLC, alone and in combination with osimertinib or other TKIs.

2.
Elife ; 112022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35735790

RESUMEN

Coronavirus disease 2019 (COVID-19) is the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; SC2), which has caused a worldwide pandemic with striking morbidity and mortality. Evaluation of SC2 strains demonstrated impressive genetic variability, and many of these viral variants are now defined as variants of concern (VOC) that cause enhanced transmissibility, decreased susceptibility to antibody neutralization or therapeutics, and/or the ability to induce severe disease. Currently, the delta (δ) and omicron (ο) variants are particularly problematic based on their impressive and unprecedented transmissibility and ability to cause breakthrough infections. The delta variant also accumulates at high concentrations in host tissues and has caused waves of lethal disease. Because studies from our laboratory have demonstrated that chitinase 3-like-1 (CHI3L1) stimulates ACE2 and Spike (S) priming proteases that mediate SC2 infection, studies were undertaken to determine if interventions that target CHI3L1 are effective inhibitors of SC2 viral variant infection. Here, we demonstrate that CHI3L1 augments epithelial cell infection by pseudoviruses that express the alpha, beta, gamma, delta, or omicron S proteins and that the CHI3L1 inhibitors anti-CHI3L1 and kasugamycin inhibit epithelial cell infection by these VOC pseudovirus moieties. Thus, CHI3L1 is a universal, VOC-independent therapeutic target in COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Quitinasas , Enzima Convertidora de Angiotensina 2 , Quitinasas/genética , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética , Internalización del Virus
3.
bioRxiv ; 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35118470

RESUMEN

COVID 19 is the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; SC2) which has caused a world-wide pandemic with striking morbidity and mortality. Evaluation of SC2 strains demonstrated impressive genetic variability and many of these viral variants are now defined as variants of concern (VOC) that cause enhanced transmissibility, decreased susceptibility to antibody neutralization or therapeutics and or the ability to induce severe disease. Currently, the delta (δ) and omicron (o) variants are particularly problematic based on their impressive and unprecedented transmissibility and ability to cause break through infections. The delta variant also accumulates at high concentrations in host tissues and has caused waves of lethal disease. Because studies from our laboratory have demonstrated that chitinase 3-like-1 (CHI3L1) stimulates ACE2 and Spike (S) priming proteases that mediate SC2 infection, studies were undertaken to determine if interventions that target CHI3L1 are effective inhibitors of SC2 viral variant infection. Here we demonstrate that CHI3L1 augments epithelial cell infection by pseudoviruses that express the alpha, beta, gamma, delta or omicron S proteins and that the CHI3L1 inhibitors anti-CHI3L1 and kasugamycin inhibit epithelial cell infection by these VOC pseudovirus moieties. Thus, CHI3L1 is a universal, VOC-independent therapeutic target in COVID 19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA