Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
iScience ; 26(11): 108014, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965155

RESUMEN

Previous studies showed that the neoantigen candidate load is an imperfect predictor of immune checkpoint blockade (ICB) efficacy. Further studies provided evidence that the response to ICB is also affected by the qualitative properties of a few or even single candidates, limiting the predictive power based on candidate quantity alone. Here, we predict ICB efficacy based on neoantigen candidates and their neoantigen features in the context of the mutation type, using Multiple-Instance Learning via Embedded Instance Selection (MILES). Multiple instance learning is a type of supervised machine learning that classifies labeled bags that are formed by a set of unlabeled instances. MILES performed better compared with neoantigen candidate load alone for low-abundant fusion genes in renal cell carcinoma. Our findings suggest that MILES is an appropriate method to predict the efficacy of ICB therapy based on neoantigen candidates without requiring direct T cell response information.

3.
Viruses ; 15(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376690

RESUMEN

BACKGROUND: The outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in the global COVID-19 pandemic. The urgency for an effective SARS-CoV-2 vaccine has led to the development of the first series of vaccines at unprecedented speed. The discovery of SARS-CoV-2 spike-glycoprotein mutants, however, and consequentially the potential to escape vaccine-induced protection and increased infectivity, demonstrates the persisting importance of monitoring SARS-CoV-2 mutations to enable early detection and tracking of genomic variants of concern. RESULTS: We developed the CoVigator tool with three components: (1) a knowledge base that collects new SARS-CoV-2 genomic data, processes it and stores its results; (2) a comprehensive variant calling pipeline; (3) an interactive dashboard highlighting the most relevant findings. The knowledge base routinely downloads and processes virus genome assemblies or raw sequencing data from the COVID-19 Data Portal (C19DP) and the European Nucleotide Archive (ENA), respectively. The results of variant calling are visualized through the dashboard in the form of tables and customizable graphs, making it a versatile tool for tracking SARS-CoV-2 variants. We put a special emphasis on the identification of intrahost mutations and make available to the community what is, to the best of our knowledge, the largest dataset on SARS-CoV-2 intrahost mutations. In the spirit of open data, all CoVigator results are available for download. The CoVigator dashboard is accessible via covigator.tron-mainz.de. CONCLUSIONS: With increasing demand worldwide in genome surveillance for tracking the spread of SARS-CoV-2, CoVigator will be a valuable resource of an up-to-date list of mutations, which can be incorporated into global efforts.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Pandemias , COVID-19/epidemiología , Genómica , Bases del Conocimiento , Mutación , Glicoproteína de la Espiga del Coronavirus
4.
Front Immunol ; 14: 1102282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969213

RESUMEN

Introduction: The cell line MC38 is a commonly used murine model for colorectal carcinoma. It has a high mutational burden, is sensitive to immune checkpoint immunotherapy and endogenous CD8+ T cell responses against neoantigens have been reported. Methods: Here, we re-sequenced exomes and transcriptomes of MC38 cells from two different sources, namely Kerafast (originating from NCI/NIH, MC38-K) and the Leiden University Medical Center cell line collection (MC38-L), comparing the cell lines on the genomic and transcriptomic level and analyzing their recognition by CD8+ T cells with known neo-epitope specificity. Results: The data reveals a distinct structural composition of MC38-K and MC38-L cell line genomes and different ploidies. Further, the MC38-L cell line harbored about 1.3-fold more single nucleotide variations and small insertions and deletions than the MC38-K cell line. In addition, the observed mutational signatures differed; only 35.3% of the non-synonymous variants and 5.4% of the fusion gene events were shared. Transcript expression values of both cell lines correlated strongly (p = 0.919), but we found different pathways enriched in the genes that were differentially upregulated in the MC38-L or MC38-K cells, respectively. Our data show that previously described neoantigens in the MC38 model such as Rpl18mut and Adpgkmut were absent in the MC38-K cell line resulting that such neoantigen-specific CD8+ T cells recognizing and killing MC38-L cells did not recognize or kill MC38-K cells. Conclusion: This strongly indicates that at least two sub-cell lines of MC38 exist in the field and underlines the importance of meticulous tracking of investigated cell lines to obtain reproducible results, and for correct interpretation of the immunological data without artifacts. We present our analyses as a reference for researchers to select the appropriate sub-cell line for their own studies.


Asunto(s)
Neoplasias Colorrectales , Transcriptoma , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Mutación
5.
Artículo en Inglés | MEDLINE | ID: mdl-38163521

RESUMEN

PURPOSE: Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS: Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS: NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS: We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.

6.
Clin Cancer Res ; 28(24): 5368-5382, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228153

RESUMEN

PURPOSE: The low mutational load of some cancers is considered one reason for the difficulty to develop effective tumor vaccines. To overcome this problem, we developed a strategy to design neopeptides through single amino acid mutations to enhance their immunogenicity. EXPERIMENTAL DESIGN: Exome and RNA sequencing as well as in silico HLA-binding predictions to autologous HLA molecules were used to identify candidate neopeptides. Subsequently, in silico HLA-anchor placements were used to deduce putative T-cell receptor (TCR) contacts of peptides. Single amino acids of TCR contacting residues were then mutated by amino acid replacements. Overall, 175 peptides were synthesized and sets of 25 each containing both peptides designed to bind to HLA class I and II molecules applied in the vaccination. Upon development of a tumor recurrence, the tumor-infiltrating lymphocytes (TIL) were characterized in detail both at the bulk and clonal level. RESULTS: The immune response of peripheral blood T cells to vaccine peptides, including natural peptides and designed neopeptides, gradually increased with repetitive vaccination, but remained low. In contrast, at the time of tumor recurrence, CD8+ TILs and CD4+ TILs responded to 45% and 100%, respectively, of the vaccine peptides. Furthermore, TIL-derived CD4+ T-cell clones showed strong responses and tumor cell lysis not only against the designed neopeptide but also against the unmutated natural peptides of the tumor. CONCLUSIONS: Turning tumor self-peptides into foreign antigens by introduction of designed mutations is a promising strategy to induce strong intratumoral CD4+ T-cell responses in a cold tumor like glioblastoma.


Asunto(s)
Linfocitos T CD4-Positivos , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Recurrencia Local de Neoplasia , Linfocitos Infiltrantes de Tumor , Receptores de Antígenos de Linfocitos T/genética , Vacunación , Péptidos , Aminoácidos , Linfocitos T CD8-positivos
7.
Nat Biotechnol ; 40(8): 1276-1284, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35379963

RESUMEN

Cancer-associated gene fusions are a potential source for highly immunogenic neoantigens, but the lack of computational tools for accurate, sensitive identification of personal gene fusions has limited their targeting in personalized cancer immunotherapy. Here we present EasyFuse, a machine learning computational pipeline for detecting cancer-specific gene fusions in transcriptome data obtained from human cancer samples. EasyFuse predicts personal gene fusions with high precision and sensitivity, outperforming previously described tools. By testing immunogenicity with autologous blood lymphocytes from patients with cancer, we detected pre-established CD4+ and CD8+ T cell responses for 10 of 21 (48%) and for 1 of 30 (3%) identified gene fusions, respectively. The high frequency of T cell responses detected in patients with cancer supports the relevance of individual gene fusions as neoantigens that might be targeted in personalized immunotherapies, especially for tumors with low mutation burden.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Linfocitos T CD8-positivos , Fusión Génica , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia
8.
Nat Rev Drug Discov ; 21(4): 261-282, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35105974

RESUMEN

Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfocitos T
9.
PLoS One ; 16(9): e0249254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34570776

RESUMEN

Due to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it. We analyzed 1,036,030 SARS-CoV-2 genome assemblies and 30,806 NGS datasets from GISAID and European Nucleotide Archive (ENA) focusing on non-synonymous mutations in the spike protein. Only around 2.5% of the samples contained the wild-type spike protein with no variation from the reference. Among the spike protein mutants, we confirmed a low mutation rate exhibiting less than 10 non-synonymous mutations in 99.6% of the analyzed sequences, but the mean and median number of spike protein mutations per sample increased over time. 5,472 distinct variants were found in total. The majority of the observed variants were recurrent, but only 21 and 14 recurrent variants were found in at least 1% of the mutant genome assemblies and NGS samples, respectively. Further, we found high-confidence subclonal variants in about 2.6% of the NGS data sets with mutant spike protein, which might indicate co-infection with various SARS-CoV-2 strains and/or intra-host evolution. Lastly, some variants might have an effect on antibody binding or T-cell recognition. These findings demonstrate the continuous importance of monitoring SARS-CoV-2 sequences for an early detection of variants that require adaptations in preventive and therapeutic strategies.


Asunto(s)
COVID-19/virología , Genoma Viral , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Tasa de Mutación , Pandemias , Dominios Proteicos , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Linfocitos T/inmunología
10.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299215

RESUMEN

Synchronous primary malignancies occur in a small proportion of head and neck squamous cell carcinoma (HNSCC) patients. Here, we analysed three synchronous primaries and a recurrence from one patient by comparing the genomic and transcriptomic profiles among the tumour samples and determining the recurrence origin. We found remarkable levels of heterogeneity among the primary tumours, and through the patterns of shared mutations, we traced the origin of the recurrence. Interestingly, the patient carried germline variants that might have predisposed him to carcinogenesis, together with a history of alcohol and tobacco consumption. The mutational signature analysis confirmed the impact of alcohol exposure, with Signature 16 present in all tumour samples. Characterisation of immune cell infiltration highlighted an immunosuppressive environment in all samples, which exceeded the potential activity of T cells. Studies such as the one described here have important clinical value and contribute to personalised treatment decisions for patients with synchronous primaries and matched recurrences.


Asunto(s)
Neoplasias de Cabeza y Cuello/genética , Mutación , Recurrencia Local de Neoplasia/genética , Neoplasias Primarias Múltiples/genética , Anciano , Consumo de Bebidas Alcohólicas/genética , Resultado Fatal , Perfilación de la Expresión Génica , Genómica , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Masculino , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Estadificación de Neoplasias , Neoplasias Primarias Múltiples/patología , Neoplasias Primarias Múltiples/terapia , Fumadores/estadística & datos numéricos
11.
Bioinformatics ; 37(22): 4246-4247, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33970219

RESUMEN

SUMMARY: The detection and prediction of true neoantigens is of great importance for the field of cancer immunotherapy. Wesearched the literature for proposed neoantigen features and integrated them into a toolbox called NEOantigen Feature toolbOX (NeoFox). NeoFox is an easy-to-use Python package that enables the annotation of neoantigen candidates with 16 neoantigen features. AVAILABILITY AND IMPLEMENTATION: NeoFox is freely available as an open source Python package released under the GNU General Public License (GPL) v3 license at https://github.com/TRON-Bioinformatics/neofox. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Antígenos de Neoplasias , Programas Informáticos , Antígenos de Neoplasias/análisis , Biología Computacional
12.
Oncoimmunology ; 9(1): 1771925, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32923128

RESUMEN

Antigen-encoding, lipoplex-formulated RNA (RNA-LPX) enables systemic delivery to lymphoid compartments and selective expression in resident antigen-presenting cells. We report here that the rejection of CT26 tumors, mediated by local radiotherapy (LRT), is further augmented in a CD8+ T cell-dependent manner by an RNA-LPX vaccine that encodes CD4+ T cell-recognized neoantigens (CD4 neoantigen vaccine). Whereas CD8+ T cells induced by LRT alone were primarily directed against the immunodominant gp70 antigen, mice treated with LRT plus the CD4 neoantigen vaccine rejected gp70-negative tumors and were protected from rechallenge with these tumors, indicating a potent poly-antigenic CD8+ T cell response and T cell memory. In the spleens of CD4 neoantigen-vaccinated mice, we found a high number of activated, poly-functional, Th1-like CD4+ T cells against ME1, the immunodominant CD4 neoantigen within the poly-neoantigen vaccine. LRT itself strongly increased CD8+ T cell numbers and clonal expansion. However, tumor infiltrates of mice treated with CD4 neoantigen vaccine/LRT, as compared to LRT alone, displayed a higher fraction of activated gp70-specific CD8+ T cells, lower PD-1/LAG-3 expression and contained ME1-specific IFNγ+ CD4+ T cells capable of providing cognate help. CD4 neoantigen vaccine/LRT treatment followed by anti-CTLA-4 antibody therapy further enhanced the efficacy with complete remission of gp70-negative CT26 tumors and survival of all mice. Our data highlight the power of combining synergistic modes of action and warrants further exploration of the presented treatment schema.


Asunto(s)
Vacunas contra el Cáncer , Animales , Antígenos de Neoplasias/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , ARN
13.
Front Oncol ; 10: 1195, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793490

RESUMEN

Background: Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. The 4T1 murine mammary cancer cell line is one of the most widely used breast cancer models. Here, we present an integrated map of the genome, transcriptome, and immunome of 4T1. Results: We found Trp53 (Tp53) and Pik3g to be mutated. Other frequently mutated genes in breast cancer, including Brca1 and Brca2, are not mutated. For cancer related genes, Nav3, Cenpf, Muc5Ac, Mpp7, Gas1, MageD2, Dusp1, Ros, Polr2a, Rragd, Ros1, and Hoxa9 are mutated. Markers for cell proliferation like Top2a, Birc5, and Mki67 are highly expressed, so are markers for metastasis like Msln, Ect2, and Plk1, which are known to be overexpressed in triple-negative breast cancer (TNBC). TNBC markers are, compared to a mammary gland control sample, lower (Esr1), comparably low (Erbb2), or not expressed at all (Pgr). We also found testis cancer antigen Pbk as well as colon/gastrointestinal cancer antigens Gpa33 and Epcam to be highly expressed. Major histocompatibility complex (MHC) class I is expressed, while MHC class II is not. We identified 505 single nucleotide variations (SNVs) and 20 insertions and deletions (indels). Neoantigens derived from 22 SNVs and one deletion elicited CD8+ or CD4+ T cell responses in IFNγ-ELISpot assays. Twelve high-confidence fusion genes were observed. We did not observe significant downregulation of mismatch repair (MMR) genes or SNVs/indels impairing their function, providing evidence for 6-thioguanine resistance. Effects of the integration of the murine mammary tumor virus were observed at the genome and transcriptome level. Conclusions: 4T1 cells share substantial molecular features with human TNBC. As 4T1 is a common model for metastatic tumors, our data supports the rational design of mode-of-action studies for pre-clinical evaluation of targeted immunotherapies.

14.
Methods Mol Biol ; 2120: 1-9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32124308

RESUMEN

Our immune system plays a key role in health and disease as it is capable of responding to foreign antigens as well as acquired antigens from cancer cells. Latter are caused by somatic mutations, the so-called neoepitopes, and might be recognized by T cells if they are presented by HLA molecules on the surface of cancer cells. Personalized mutanome vaccines are a class of customized immunotherapies, which is dependent on the detection of individual cancer-specific tumor mutations and neoepitope (i.e., prediction, followed by a rational vaccine design, before on-demand production. The development of next generation sequencing (NGS) technologies and bioinformatic tools allows a large-scale analysis of each parameter involved in this process. Here, we provide an overview of the bioinformatic aspects involved in the design of personalized, neoantigen-based vaccines, including the detection of mutations and the subsequent prediction of potential epitopes, as well as methods for associated biomarker research, such as high-throughput sequencing of T-cell receptors (TCRs), followed by data analysis and the bioinformatics quantification of immune cell infiltration in cancer samples.


Asunto(s)
Biología Computacional/métodos , Inmunoterapia/métodos , Neoplasias/terapia , Animales , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Humanos , Mutación , Neoplasias/genética , Neoplasias/inmunología , Linfocitos T/inmunología
15.
Oncoimmunology ; 7(8): e1450127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30221038

RESUMEN

The profound but frequently transient clinical responses to BRAFV600 inhibitor (BRAFi) treatment in melanoma emphasize the need for combinatorial therapies. Multiple clinical trials combining BRAFi and immunotherapy are under way to further enhance therapeutic responses. However, to which extent BRAFV600 inhibition may affect melanoma immunogenicity over time remains largely unknown. To support the development of an optimal treatment protocol, we studied the impact of prolonged BRAFi exposure on the recognition of melanoma cells by T cells in different patient models. We demonstrate that autologous CD8+ tumor-infiltrating lymphocytes (TILs) efficiently recognized short-term (3, 7 days) BRAFi-treated melanoma cells but were less responsive towards long-term (14, 21 days) exposed tumor cells. Those long-term BRAFi-treated melanoma cells showed a non-proliferative dedifferentiated phenotype and were less sensitive to four out of five CD8+ T cell clones, present in the preexisting TIL repertoire, of which three recognized shared antigens (Tyrosinase, Melan-A and CSPG4) and one being neoantigen-specific. Only a second neoantigen was steadily recognized independent of treatment duration. Notably, in all cases the impaired T cell activation was due to a time-dependent downregulation of their respective target antigens. Moreover, combinatorial treatment of melanoma cells with BRAFi and an inhibitor of its downstream kinase MEK had similar effects on T cell recognition. In summary, MAP kinase inhibitors (MAPKi) strongly alter the tumor antigen expression profile over time, favoring evolution of melanoma variants cross-resistant to both T cells and MAPKi. Our data suggest that simultaneous treatment with MAPKi and immunotherapy could be most effective for tumor elimination.

17.
Nature ; 547(7662): 222-226, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28678784

RESUMEN

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of ß2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.


Asunto(s)
Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Melanoma/inmunología , Melanoma/terapia , Mutación/genética , Medicina de Precisión/métodos , ARN/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1/inmunología , Antígenos CD8/inmunología , Vacunas contra el Cáncer/uso terapéutico , Epítopos/genética , Epítopos/inmunología , Humanos , Inmunoterapia/métodos , Melanoma/genética , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/prevención & control , Nivolumab , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/inmunología , Vacunación , Microglobulina beta-2/deficiencia
18.
Oncotarget ; 8(17): 28312-28327, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28423700

RESUMEN

T lymphocytes against tumor-specific mutated neoantigens can induce tumor regression. Also, the size of the immunogenic cancer mutanome is supposed to correlate with the clinical efficacy of checkpoint inhibition. Herein, we studied the susceptibility of tumor cell lines from lymph node metastases occurring in a melanoma patient over several years towards blood-derived, neoantigen-specific CD8+ T cells. In contrast to a cell line established during early stage III disease, all cell lines generated at later time points from stage IV metastases exhibited partial or complete loss of HLA class I expression. Whole exome and transcriptome sequencing of the four tumor lines and a germline control were applied to identify expressed somatic single nucleotide substitutions (SNS), insertions and deletions (indels). Candidate peptides encoded by these variants and predicted to bind to the patient's HLA class I alleles were synthesized and tested for recognition by autologous mixed lymphocyte-tumor cell cultures (MLTCs). Peptides from four mutated proteins, HERPUD1G161S, INSIG1S238F, MMS22LS437F and PRDM10S1050F, were recognized by MLTC responders and MLTC-derived T cell clones restricted by HLA-A*24:02 or HLA-B*15:01. Intracellular peptide processing was verified with transfectants. All four neoantigens could only be targeted on the cell line generated during early stage III disease. HLA loss variants of any kind were uniformly resistant. These findings corroborate that, although neoantigens represent attractive therapeutic targets, they also contribute to the process of cancer immunoediting as a serious limitation to specific T cell immunotherapy.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Genes MHC Clase I , Melanoma/genética , Melanoma/inmunología , Mutación , Linfocitos T/inmunología , Linfocitos T/metabolismo , Alelos , Animales , Presentación de Antígeno , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Mapeo Epitopo , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Melanoma/patología , Ratones , Metástasis de la Neoplasia , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Transcriptoma
19.
Cancer Res ; 76(15): 4347-58, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27261508

RESUMEN

Melanoma often recurs after a latency period of several years, presenting a T cell-edited phenotype that reflects a role for CD8(+) T cells in maintaining metastatic latency. Here, we report an investigation of a patient with multiple recurrent lesions, where poorly immunogenic melanoma phenotypes were found to evolve in the presence of autologous tumor antigen-specific CD8(+) T cells. Melanoma cells from two of three late recurrent metastases, developing within a 6-year latency period, lacked HLA class I expression. CD8(+) T cell-resistant, HLA class I-negative tumor cells became clinically apparent 1.5 and 6 years into stage IV disease. Genome profiling by SNP arrays revealed that HLA class I loss in both metastases originated from a shared chromosome 15q alteration and independently acquired focal B2M gene deletions. A third HLA class I haplotype-deficient lesion developed in year 3 of stage IV disease that acquired resistance toward dominant CD8(+) T-cell clonotypes targeting stage III tumor cells. At an early stage, melanoma cells showed a dedifferentiated c-Jun(high)/MITF(low) phenotype, possibly associated with immunosuppression, which contrasted with a c-Jun(low)/MITF(high) phenotype of T cell-edited tumor cells derived from late metastases. In summary, our work shows how tumor recurrences after long-term latency evolve toward T-cell resistance by independent genetic events, as a means for immune escape and immunotherapeutic resistance. Cancer Res; 76(15); 4347-58. ©2016 AACR.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Melanoma/genética , Proteínas de Neoplasias/inmunología , Humanos , Melanoma/patología , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...