Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Radiol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955845

RESUMEN

OBJECTIVES: Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) analyzes MRI data independently, and has been shown to be on par with clinical radiologists, but has yet to be incorporated into RCs. The goal of this study is to re-assess the diagnostic quality of RCs, the impact of replacing PI-RADS with DL predictions, and potential performance gains by adding DL besides PI-RADS. MATERIAL AND METHODS: One thousand six hundred twenty-seven consecutive examinations from 2014 to 2021 were included in this retrospective single-center study, including 517 exams withheld for RC testing. Board-certified radiologists assessed PI-RADS during clinical routine, then systematic and MRI/Ultrasound-fusion biopsies provided histopathological ground truth for significant prostate cancer (sPC). nnUNet-based DL ensembles were trained on biparametric MRI predicting the presence of sPC lesions (UNet-probability) and a PI-RADS-analogous five-point scale (UNet-Likert). Previously published RCs were validated as is; with PI-RADS substituted by UNet-Likert (UNet-Likert-substituted RC); and with both UNet-probability and PI-RADS (UNet-probability-extended RC). Together with a newly fitted RC using clinical data, PI-RADS and UNet-probability, existing RCs were compared by receiver-operating characteristics, calibration, and decision-curve analysis. RESULTS: Diagnostic performance remained stable for UNet-Likert-substituted RCs. DL contained complementary diagnostic information to PI-RADS. The newly-fitted RC spared 49% [252/517] of biopsies while maintaining the negative predictive value (94%), compared to PI-RADS ≥ 4 cut-off which spared 37% [190/517] (p < 0.001). CONCLUSIONS: Incorporating DL as an independent diagnostic marker for RCs can improve patient stratification before biopsy, as there is complementary information in DL features and clinical PI-RADS assessment. CLINICAL RELEVANCE STATEMENT: For patients with positive prostate screening results, a comprehensive diagnostic workup, including prostate MRI, DL analysis, and individual classification using nomograms can identify patients with minimal prostate cancer risk, as they benefit less from the more invasive biopsy procedure. KEY POINTS: The current MRI-based nomograms result in many negative prostate biopsies. The addition of DL to nomograms with clinical data and PI-RADS improves patient stratification before biopsy. Fully automatic DL can be substituted for PI-RADS without sacrificing the quality of nomogram predictions. Prostate nomograms show cancer detection ability comparable to previous validation studies while being suitable for the addition of DL analysis.

2.
Sci Rep ; 13(1): 19805, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957250

RESUMEN

Prostate cancer (PCa) diagnosis on multi-parametric magnetic resonance images (MRI) requires radiologists with a high level of expertise. Misalignments between the MRI sequences can be caused by patient movement, elastic soft-tissue deformations, and imaging artifacts. They further increase the complexity of the task prompting radiologists to interpret the images. Recently, computer-aided diagnosis (CAD) tools have demonstrated potential for PCa diagnosis typically relying on complex co-registration of the input modalities. However, there is no consensus among research groups on whether CAD systems profit from using registration. Furthermore, alternative strategies to handle multi-modal misalignments have not been explored so far. Our study introduces and compares different strategies to cope with image misalignments and evaluates them regarding to their direct effect on diagnostic accuracy of PCa. In addition to established registration algorithms, we propose 'misalignment augmentation' as a concept to increase CAD robustness. As the results demonstrate, misalignment augmentations can not only compensate for a complete lack of registration, but if used in conjunction with registration, also improve the overall performance on an independent test set.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Imagen por Resonancia Magnética/métodos , Diagnóstico por Computador/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Computadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...