Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-11088238

RESUMEN

The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two-photon laser excitation at 205 nm. The resulting fluorescence is resolved in time with a fast photomultiplier tube to investigate the occurrence of quenching. A fluorescence decay time of (10+/-0.5) ns is measured under all circumstances, indicating that there is a complete l mixing of the p=3 sublevels. A time-resolved collisional radiative model is developed to model pulsed laser induced fluorescence for a large range of plasma parameters. The model calculations agree well with the experimental results over the entire range of conditions and indicate that two-photon LIF can strongly influence the local electron and ion densities, resulting in a "self-quenching" of the laser-induced H fluorescence.

2.
Phys Rev Lett ; 84(12): 2622-5, 2000 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-11017284

RESUMEN

A two-photon laser-induced fluorescence study on the transport of ground-state atomic hydrogen in a supersonic plasma jet, generated from an Ar-H (2) mixture, reveals an unexpected shock pattern. Whereas both the axial-velocity profile and the temperature profile of hydrogen atoms along the jet centerline can be interpreted in terms of a supersonic expansion of an Ar-H gas mixture, the H-atom density profiles do not satisfy the well established Rankine-Hugoniot relation leading to a nonconservation of the forward flux. The experimental results show that H atoms escape from the supersonic expansion by a diffusion process due to strong density gradients between the core of the jet and its vicinity.

14.
Phys Rev A ; 42(4): 2461-2462, 1990 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9904305
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...