Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 24(12): 103404, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34849468

RESUMEN

Denitrification supports anoxic growth of Pseudomonas aeruginosa in infections. Moreover, denitrification may provide oxygen (O2) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in Methylomirabilis oxyfera. To examine the prevalence of NO dismutation we studied O2 release by P. aeruginosa in airtight vials. P. aeruginosa rapidly depleted O2 but NO supplementation generated peaks of O2 at the onset of anoxia, and we demonstrate a direct role of NO in the O2 release. However, we were not able to detect genetic evidence for putative NO dismutases. The supply of endogenous O2 at the onset of anoxia could play an adaptive role when P. aeruginosa enters anaerobiosis. Furthermore, O2 generation by NO dismutation may be more widespread than indicated by the reports on the distribution of homologues genes. In general, NO dismutation may allow removal of nitrate by denitrification without release of the very potent greenhouse gas, nitrous oxide.

2.
Redox Biol ; 28: 101331, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568923

RESUMEN

Iodide ions (I-) are an essential dietary mineral, and crucial for mental and physical development, fertility and thyroid function. I- is also a high affinity substrate for the heme enzyme myeloperoxidase (MPO), which is involved in bacterial cell killing during the immune response, and also host tissue damage during inflammation. In the presence of H2O2 and Cl-, MPO generates the powerful oxidant hypochlorous acid (HOCl), with excessive formation of this species linked to multiple inflammatory diseases. In this study, we have examined the hypothesis that elevated levels of I- would decrease HOCl formation and thereby protein damage induced by a MPO/Cl-/H2O2 system, by acting as a competitive substrate. The presence of increasing I- concentrations (0.1-10 µM; i.e. within the range readily achievable by oral supplementation in humans), decreased damage to both model proteins and extracellular matrix components as assessed by gross structural changes (SDS-PAGE), antibody recognition of parent and modified protein epitopes (ELISA), and quantification of both parent amino acid loss (UPLC) and formation of the HOCl-biomarker 3-chlorotyrosine (LC-MS) (reduced by ca. 50% at 10 µM I-). Elevated levels of I- ( > 1 µM) also protected against functional changes as assessed by a decreased loss of adhesion (eg. 40% vs. < 22% with >1 µM I-) of primary human coronary artery endothelial cells (HCAECs), to MPO-modified human plasma fibronectin. These data indicate that low micromolar concentrations of I-, which can be readily achieved in humans and are readily tolerated, may afford protection against cell and tissue damage induced by MPO.


Asunto(s)
Susceptibilidad a Enfermedades , Hemo/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Yoduros/metabolismo , Peroxidasa/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ácido Hipocloroso/metabolismo , Inflamación/patología , Yoduros/farmacología , Oxidación-Reducción , Conformación Proteica/efectos de los fármacos
3.
Commun Biol ; 2: 184, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098417

RESUMEN

Plastic pollution is a global threat to marine ecosystems. Plastic litter can leach a variety of substances into marine environments; however, virtually nothing is known regarding how this affects photosynthetic bacteria at the base of the marine food web. To address this, we investigated the effect of plastic leachate exposure on marine Prochlorococcus, widely considered the most abundant photosynthetic organism on Earth and vital contributors to global primary production and carbon cycling. Two strains of Prochlorococcus representing distinct ecotypes were exposed to leachate from common plastic items: high-density polyethylene bags and polyvinyl chloride matting. We show leachate exposure strongly impairs Prochlorococcus in vitro growth and photosynthetic capacity and results in genome-wide transcriptional changes. The strains showed distinct differences in the extent and timing of their response to each leachate. Consequently, plastic leachate exposure could influence marine Prochlorococcus community composition and potentially the broader composition and productivity of ocean phytoplankton communities.


Asunto(s)
Plásticos/toxicidad , Prochlorococcus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , Ecosistema , Genoma Bacteriano/efectos de los fármacos , Modelos Biológicos , Océanos y Mares , Oxígeno/metabolismo , Fotosíntesis/efectos de los fármacos , Plásticos/química , Polietileno/toxicidad , Cloruro de Polivinilo/toxicidad , Prochlorococcus/crecimiento & desarrollo , Prochlorococcus/metabolismo , RNA-Seq , Agua de Mar/microbiología , Contaminantes Químicos del Agua/química
4.
Free Radic Biol Med ; 128: 111-123, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29860128

RESUMEN

There is a strong need for techniques that can quantify the important reactive oxygen species hydrogen peroxide (H2O2) in complex media and in vivo. We combined chemiluminescence-based H2O2 measurements on a commercially available flow injection analysis (FIA) system with sampling of the analyte using microdialysis probes (MDPs), typically used for measurements in tissue. This allows minimally invasive, quantitative measurements of extracellular H2O2 concentration and dynamics utilizing the chemiluminescent reaction of H2O2 with acridinium ester. By coupling MDPs to the FIA system, measurements are no longer limited to filtered, liquid samples with low viscosity, as sampling via a MDP is based on a dynamic exchange through a permeable membrane with a specific cut-off. This allows continuous monitoring of dynamic changes in H2O2 concentrations, alleviates potential pH effects on the measurements, and allows for flexible application in different media and systems. We give a detailed description of the novel experimental setup and its measuring characteristics along with examples of application in different media and organisms to highlight its broad applicability, but also to discuss current limitations and challenges. The combined FIA-MDP approach for H2O2 quantification was used in different biological systems ranging from marine biology, using the model organism Exaiptasia pallida (light stress induced H2O2 release up to ~ 2.7 µM), over biomedical applications quantifying enzyme dynamics (glucose oxidase in a glucose solution producing up to ~ 60 µM H2O2 and the subsequent addition of catalase to monitor the H2O2 degradation process) and the ability of bacteria to modify their direct environment by regulating H2O2 concentrations in their surrounding media. This was shown by the bacteria Pseudomonas aeruginosa degrading ~ 18 µM background H2O2 in LB-broth. We also discuss advantages and current limitations of the FIA-MDP system, including a discussion of potential cross-sensitivity and interfering chemical species.


Asunto(s)
Medios de Cultivo/metabolismo , Análisis de Inyección de Flujo/métodos , Peróxido de Hidrógeno/análisis , Microdiálisis/métodos , Pseudomonas aeruginosa/metabolismo , Anémonas de Mar/metabolismo , Animales , Ritmo Circadiano , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo
5.
Mar Environ Res ; 136: 38-47, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29472034

RESUMEN

Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O2 uptake (DOU) rates, lower O2 penetration depths, and higher volume-specific O2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H2S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions.


Asunto(s)
Alismatales/fisiología , Ecosistema , Luz Solar , Australia , Biomasa , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Islas , Agua
6.
Front Plant Sci ; 8: 657, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536583

RESUMEN

HIGHLIGHTS: Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic H2S. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O2 and H2S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ~20% of controls without particles, and the compensation photon irradiance increased from a span of 20-53 to 109-145 µmol photons m-2 s-1. An ~2.5-fold thicker DBL around leaves with fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf meristematic O2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H2S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants' resilience against H2S intrusion.

7.
J Phycol ; 53(3): 589-600, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28196275

RESUMEN

The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change. Despite the extensive characterizations of Symbiodinium diversity found amongst reef cnidarians on the Great Barrier Reef (GBR) substantial biogeographic gaps exist, especially across inshore habitats. Here, we investigate Symbiodinium community patterns in invertebrates from inshore and mid-shelf reefs on the southern GBR, Australia. Dominant Symbiodinium types were characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Twenty one genetically distinct Symbiodinium types including four novel types were identified from 321 reef-invertebrate samples comprising three sub-generic clades (A, C, and D). A range of host genera harbored C22a, which is normally rare or absent from inshore or low latitude reefs in the GBR. Multivariate analysis showed that host identity and sea surface temperature best explained the variation in symbiont communities across sites. Patterns of changes in Symbiodinium community assemblage over small geographic distances (100s of kilometers or less) indicate the likelihood that shifts in Symbiodinium distributions and associated host populations, may occur in response to future climate change impacting the GBR.


Asunto(s)
Dinoflagelados/fisiología , Invertebrados/parasitología , Simbiosis , Animales , Biota , Arrecifes de Coral , Dinoflagelados/clasificación , Invertebrados/fisiología , Queensland
8.
Biochim Biophys Acta ; 1857(6): 840-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26869375

RESUMEN

The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching.


Asunto(s)
Antozoos/parasitología , Dinoflagelados/fisiología , Estrés Fisiológico/fisiología , Simbiosis/fisiología , Temperatura , Animales , Clorofila/metabolismo , Dinoflagelados/metabolismo , Dinoflagelados/ultraestructura , Transporte de Electrón/efectos de la radiación , Cinética , Luz , Mediciones Luminiscentes/métodos , Microscopía Electrónica de Transmisión , Modelos Biológicos , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Factores de Tiempo
9.
PLoS One ; 9(10): e110814, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360746

RESUMEN

The light dependency of respiratory activity of two scleractinian corals was examined using O2 microsensors and CO2 exchange measurements. Light respiration increased strongly but asymptotically with elevated irradiance in both species. Light respiration in Pocillopora damicornis was higher than in Pavona decussata under low irradiance, indicating species-specific differences in light-dependent metabolic processes. Overall, the coral P. decussata exhibited higher CO2 uptake rates than P. damicornis over the experimental irradiance range. P. decussata also harboured twice as many algal symbionts and higher total protein biomass compared to P. damicornis, possibly resulting in self-shading of the symbionts and/or changes in host tissue specific light distribution. Differences in light respiration and CO2 availability could be due to host-specific characteristics that modulate the symbiont microenvironment, its photosynthesis, and hence the overall performance of the coral holobiont.


Asunto(s)
Antozoos/metabolismo , Antozoos/efectos de la radiación , Luz , Fotosíntesis/efectos de la radiación , Respiración/efectos de la radiación , Animales , Antozoos/fisiología , Transporte Biológico/efectos de la radiación , Dióxido de Carbono/metabolismo , Oxígeno/metabolismo , Simbiosis/efectos de la radiación
10.
J Phycol ; 50(3): 552-63, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26988327

RESUMEN

Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty-nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross-shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host-specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.

11.
Appl Environ Microbiol ; 78(11): 3896-904, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22467501

RESUMEN

The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O(2) concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of E(k) (saturating irradiance) >250 µmol photons m(-2) s(-1) for blue light but no clear saturation at 365 µmol photons m(-2) s(-1) for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 µmol O(2) mg Chl d(-1) h(-1) (NIR) and ∼1,128 µmol O(2) mg Chl d(-1) h(-1) (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10(-6) m(2) mg Chl d(-1) (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10(-6) m(2) mg Chl d(-1)]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O(2) conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Clorofila/metabolismo , Cianobacterias/fisiología , Fotosíntesis/efectos de la radiación , Células Inmovilizadas , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Rayos Infrarrojos , Oxígeno/metabolismo , Oxígeno/farmacología , Fotosíntesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...