Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Psychol Med ; : 1-11, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38389452

RESUMEN

BACKGROUND: Interactions between the endocannabinoid system (ECS) and neurotransmitter systems might mediate the risk of developing a schizophrenia spectrum disorder (SSD). Consequently, we investigated in patients with SSD and healthy controls (HC) the relations between (1) plasma concentrations of two prototypical endocannabinoids (N-arachidonoylethanolamine [anandamide] and 2-arachidonoylglycerol [2-AG]) and (2) striatal dopamine synthesis capacity (DSC), and glutamate and y-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC). As anandamide and 2-AG might reduce the activity of these neurotransmitters, we hypothesized negative correlations between their plasma levels and the abovementioned neurotransmitters in both groups. METHODS: Blood samples were obtained from 18 patients and 16 HC to measure anandamide and 2-AG plasma concentrations. For all subjects, we acquired proton magnetic resonance spectroscopy scans to assess Glx (i.e. glutamate plus glutamine) and GABA + (i.e. GABA plus macromolecules) concentrations in the ACC. Ten patients and 14 HC also underwent [18F]F-DOPA positron emission tomography for assessment of striatal DSC. Multiple linear regression analyses were used to investigate the relations between the outcome measures. RESULTS: A negative association between 2-AG plasma concentration and ACC Glx concentration was found in patients (p = 0.008). We found no evidence of other significant relationships between 2-AG or anandamide plasma concentrations and dopaminergic, glutamatergic, or GABAergic measures in either group. CONCLUSIONS: Our preliminary results suggest an association between peripheral 2-AG and ACC Glx levels in patients.

2.
Sci Rep ; 14(1): 1084, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212349

RESUMEN

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/psicología , Benchmarking , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos
3.
Schizophr Res ; 264: 471-478, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277736

RESUMEN

BACKGROUND: Around 30 % of schizophrenia patients do not respond sufficiently to conventional antipsychotic treatment. Glutamate and γ-aminobutyric acid (GABA) may be implicated in treatment resistant (TR) patients. Some data indicate that TR patients show increased glutamate levels compared to responders, but findings are inconclusive and limited in the early disease stage. Furthermore, the two neurotransmitters have rarely been assessed in conjunction. We therefore aimed to investigate the role of GABA+ and glutamate in first episode TR patients and explore whether these neurometabolites could be potential predictive markers for TR schizophrenia. STUDY DESIGN: We used proton magnetic resonance spectroscopy (MRS) to assess glutamate + glutamine (Glx) and GABA including macromolecules (GABA+) in the anterior cingulate cortex (ACC) of 58 first episode psychosis patients. At six months follow-up treatment response was determined and in a subgroup of 33 patients a follow-up MRS scan was acquired. STUDY RESULTS: Glx and GABA+ levels were not significantly different between TR patients and responders at baseline and the levels did not change at six months follow-up. The groups differed in voxel fractions, which could have influenced our results even though we corrected for these differences. CONCLUSIONS: Our findings do not provide evidence that ACC Glx or GABA+ levels are potential biomarkers for TR in first episode psychosis. Future research needs to take in to account voxel fractions and report potential differences. Comparison with previous literature suggests that illness duration, clozapine responsiveness and medication effects may partly explain the heterogeneous results on Glx and GABA+ levels in TR.


Asunto(s)
Ácido Glutámico , Trastornos Psicóticos , Humanos , Glutamina , Giro del Cíngulo/diagnóstico por imagen , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Ácido gamma-Aminobutírico
4.
Neuroradiology ; 66(1): 31-42, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38047983

RESUMEN

PURPOSE: Artifacts in magnetic resonance imaging (MRI) scans degrade image quality and thus negatively affect the outcome measures of clinical and research scanning. Considering the time-consuming and subjective nature of visual quality control (QC), multiple (semi-)automatic QC algorithms have been developed. This systematic review presents an overview of the available (semi-)automatic QC algorithms and software packages designed for raw, structural T1-weighted (T1w) MRI datasets. The objective of this review was to identify the differences among these algorithms in terms of their features of interest, performance, and benchmarks. METHODS: We queried PubMed, EMBASE (Ovid), and Web of Science databases on the fifth of January 2023, and cross-checked reference lists of retrieved papers. Bias assessment was performed using PROBAST (Prediction model Risk Of Bias ASsessment Tool). RESULTS: A total of 18 distinct algorithms were identified, demonstrating significant variations in methods, features, datasets, and benchmarks. The algorithms were categorized into rule-based, classical machine learning-based, and deep learning-based approaches. Numerous unique features were defined, which can be roughly divided into features capturing entropy, contrast, and normative measures. CONCLUSION: Due to dataset-specific optimization, it is challenging to draw broad conclusions about comparative performance. Additionally, large variations exist in the used datasets and benchmarks, further hindering direct algorithm comparison. The findings emphasize the need for standardization and comparative studies for advancing QC in MR imaging. Efforts should focus on identifying a dataset-independent measure as well as algorithm-independent methods for assessing the relative performance of different approaches.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático , Algoritmos , Control de Calidad
5.
Am J Hematol ; 99(2): 163-171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37859469

RESUMEN

Sickle cell disease (SCD) is characterized by chronic hemolytic anemia associated with impaired cerebral hemodynamics and oxygen metabolism. Hematopoietic stem cell transplantation (HSCT) is currently the only curative treatment for patients with SCD. Whereas normalization of hemoglobin levels and hemolysis markers has been reported after HSCT, its effects on cerebral perfusion and oxygenation in adult SCD patients remain largely unexplored. This study investigated the effects of HSCT on cerebral blood flow (CBF), oxygen delivery, cerebrovascular reserve (CVR), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ) in 17 adult SCD patients (mean age: 25.0 ± 8.0, 6 females) before and after HSCT and 10 healthy ethnicity-matched controls (mean age: 28.0 ± 8.8, 6 females) using MRI. For the CVR assessment, perfusion scans were performed before and after acetazolamide as a vasodilatory stimulus. Following HSCT, gray and white matter (GM and WM) CBF decreased (p < .01), while GM and WM CVR increased (p < .01) compared with the baseline measures. OEF and CMRO2 also increased towards levels in healthy controls (p < .01). The normalization of cerebral perfusion and oxygen metabolism corresponded with a significant increase in hemoglobin levels and decreases in reticulocytes, total bilirubin, and LDH as markers of hemolysis (p < .01). This study shows that HSCT results in the normalization of cerebral perfusion and oxygen metabolism, even in adult patients with SCD. Future follow-up MRI scans will determine whether the observed normalization of cerebral hemodynamics and oxygen metabolism prevents new silent cerebral infarcts.


Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Adulto , Femenino , Humanos , Hemólisis , Imagen por Resonancia Magnética/métodos , Hemodinámica , Oxígeno/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre , Hemoglobinas/metabolismo , Circulación Cerebrovascular/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Consumo de Oxígeno
6.
Neurosci Biobehav Rev ; 156: 105497, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100958

RESUMEN

Tobacco use and major depression are both leading contributors to the global burden of disease and are also highly comorbid. Previous research indicates bi-directional causality between tobacco use and depression, but the mechanisms that underlie this causality are unclear, especially for the causality from tobacco use to depression. Here we narratively review the available evidence for a potential causal role of gray matter volume in the association. We summarize the findings of large existing neuroimaging meta-analyses, studies in UK Biobank, and the Enhancing NeuroImaging Genetics through MetaAnalysis (ENIGMA) consortium and assess the overlap in implicated brain areas. In addition, we review two types of methods that allow us more insight into the causal nature of associations between brain volume and depression/smoking: longitudinal studies and Mendelian Randomization studies. While the available evidence suggests overlap in the alterations in brain volumes implicated in tobacco use and depression, there is a lack of research examining the underlying pathophysiology. We conclude with recommendations on (genetically-informed) causal inference methods useful for studying these associations.


Asunto(s)
Depresión , Sustancia Gris , Fumar , Humanos , Depresión/diagnóstico por imagen , Estudio de Asociación del Genoma Completo , Sustancia Gris/diagnóstico por imagen , Fumar/efectos adversos
7.
iScience ; 26(12): 108478, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38094244

RESUMEN

Animal studies suggest that short-chain fatty acids acetate and butyrate are key players in the gut-brain axis and may affect insulin sensitivity. We investigated the association of intestinal acetate and butyrate availability (measured by butyryl-coenzyme A transferase (ButCoA) gene amount) with insulin sensitivity and secretion in healthy subjects from the HELIUS cohort study from the highest 15% (N = 30) and the lowest 15% (N = 30) intestinal ButCoA gene amount. The groups did not differ in insulin sensitivity or secretion. However, the high ButCoA group showed lower glucose and insulin peaks during the first 60 min after a meal and a higher nadir during the second 60 min (p < 0.01), suggesting delayed glucose adsorption from the small intestine. Our data suggest that chronically increased acetate and butyrate availability may improve glucose metabolism by delaying gastric emptying and intestinal adsorption. Future studies should further investigate the effect of acetate and butyrate interventions.

8.
J Psychopharmacol ; 37(12): 1209-1217, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37947344

RESUMEN

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) potentiate serotonergic neurotransmission by blocking the serotonin transporter (5-HTT), but the functional brain response to SSRIs involves neural circuits beyond regions with high 5-HTT expression. Currently, it is unclear whether and how changes in 5-HTT availability after SSRI administration modulate brain function of key serotoninergic circuits, including those characterized by high availability of the serotonin 1A receptor (5-HT1AR). AIM: We investigated the association between 5-HTT availability and 5-HTT- and 5-HT1AR-enriched functional connectivity (FC) after an acute citalopram challenge. METHODS: We analyzed multimodal data from a dose-response, placebo-controlled, double-blind study, in which 45 healthy women were randomized into three groups receiving placebo, a low (4 mg), or high (16 mg) oral dose of citalopram. Receptor-Enhanced Analysis of functional Connectivity by Targets was used to estimate 5-HTT- and 5-HT1AR-enriched FC from resting-state and task-based fMRI. 5-HTT availability was determined using [123I]FP-CIT single-photon emission computerized tomography. RESULTS: 5-HTT availability was negatively correlated with resting-state 5-HTT-enriched FC, and with task-dependent 5-HT1AR-enriched FC. Our exploratory analyses revealed lower 5-HT1AR-enriched FC in the low-dose group compared to the high-dose group at rest and the placebo group during the emotional face-matching task. CONCLUSIONS: Taken together, our findings provide evidence for differential links between 5-HTT availability and brain function within 5-HTT and 5-HT1AR pathways and in context- and dose-dependent manner. As such, they support a potential pivotal role of the 5-HT1AR in the effects of citalopram on the brain and add to its potential as a therapeutic avenue for mood and anxiety disturbances.


Asunto(s)
Citalopram , Inhibidores Selectivos de la Recaptación de Serotonina , Humanos , Femenino , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Serotonina/metabolismo , Neuroimagen/métodos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
9.
Neuroimage Clin ; 40: 103517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37812859

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs), serotonin and noradrenaline reuptake inhibitors (SNRIs), and (es)ketamine are used to treat major depressive disorder (MDD). These different types of medication may involve common neural pathways related to glutamatergic and GABAergic neurotransmitter systems, both of which have been implicated in MDD pathology. We conducted a systematic review of pharmacological proton Magnetic Resonance Spectroscopy (1H-MRS) studies in healthy volunteers and individuals with MDD to explore the potential impact of these medications on glutamatergic and GABAergic systems. We searched PubMed, Web of Science and Embase and included randomized controlled trials or cohort studies, which assessed the effects of SSRIs, SNRIs, or (es)ketamine on glutamate, glutamine, Glx or GABA using single-voxel 1H-MRS or Magnetic Resonance Spectroscopic Imaging (MRSI). Additionally, studies were included when they used a field strength > 1.5 T, and when a comparison of metabolite levels between antidepressant treatment and placebo or baseline with post-medication metabolite levels was done. We excluded animal studies, duplicate publications, or articles with 1H-MRS data already described in another included article. Twenty-nine studies were included in this review. Fifteen studies investigated the effect of administration or treatment with SSRIs or SNRIs, and fourteen studies investigated the effect of (es)ketamine on glutamatergic and GABAergic metabolite levels. Studies on SSRIs and SNRIs were highly variable, generally underpowered, and yielded no consistent findings across brain regions or specific populations. Although studies on (es)ketamine were also highly variable, some demonstrated an increase in glutamate levels in the anterior cingulate cortex in a time-dependent manner after administration. Our findings highlight the need for standardized study and acquisition protocols. Additionally, measuring metabolites dynamically over time or combining 1H-MRS with whole brain functional imaging techniques could provide valuable insights into the effects of these medications on glutamate and GABAergic neurometabolism.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Inhibidores de Captación de Serotonina y Norepinefrina , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Ketamina/farmacología , Ketamina/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ácido Glutámico/metabolismo
10.
Brain Connect ; 13(9): 541-552, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578129

RESUMEN

Introduction: The habenula, a brain region involved in aversion, might negatively modulate caloric intake. Functional magnetic resonance imaging (fMRI) studies reported associations between weight loss and habenula functional connectivity. However, whether habenula resting-state functional connectivity (rsFC) and reward-related activity are altered in obesity is yet unknown. Methods: Using data from the Human Connectome Project, we included 300 subjects with various body mass indexes (BMIs) and a healthy long-term blood glucose (hemoglobin A1c [HbA1c]). In addition, we investigated a potential BMI × HbA1c interaction in a separate cohort including subjects with prediabetes (n = 72). Habenula rsFC was assessed using a region of interest (ROI)-to-ROI analysis. Furthermore, a separate analysis using gambling task fMRI data focused on reward-related habenula activity. Results: We did not find an association between BMI and habenula rsFC for any of the ROIs. For the exploratory analysis of the BMI × HbA1c effect, a significant interaction effect was found for the habenula-ventral tegmental area (VTA) connection, but this did not survive multiple comparisons correction. Monetary punishment compared with reward activated the bilateral habenula in the BMI sample, but this activity was not associated with BMI. Discussion: In conclusion, we did not find evidence for an association between BMI and habenula rsFC or reward-related activity. However, there might be an interaction between BMI and HbA1c for the habenula-VTA rsFC, suggestive of a role of the habenula in glucose regulation. Future studies should focus on metabolic parameters in their experimental design to confirm our findings and explore the precise role of the habenula in metabolism.


Asunto(s)
Conectoma , Habénula , Humanos , Conectoma/métodos , Habénula/diagnóstico por imagen , Habénula/fisiología , Hemoglobina Glucada , Imagen por Resonancia Magnética , Obesidad/diagnóstico por imagen , Recompensa
11.
Nat Metab ; 5(6): 1059-1072, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37308722

RESUMEN

Post-ingestive nutrient signals to the brain regulate eating behaviour in rodents, and impaired responses to these signals have been associated with pathological feeding behaviour and obesity. To study this in humans, we performed a single-blinded, randomized, controlled, crossover study in 30 humans with a healthy body weight (females N = 12, males N = 18) and 30 humans with obesity (females N = 18, males N = 12). We assessed the effect of intragastric glucose, lipid and water (noncaloric isovolumetric control) infusions on the primary endpoints cerebral neuronal activity and striatal dopamine release, as well as on the secondary endpoints plasma hormones and glucose, hunger scores and caloric intake. To study whether impaired responses in participants with obesity would be partially reversible with diet-induced weight loss, imaging was repeated after 10% diet-induced weight loss. We show that intragastric glucose and lipid infusions induce orosensory-independent and preference-independent, nutrient-specific cerebral neuronal activity and striatal dopamine release in lean participants. In contrast, participants with obesity have severely impaired brain responses to post-ingestive nutrients. Importantly, the impaired neuronal responses are not restored after diet-induced weight loss. Impaired neuronal responses to nutritional signals may contribute to overeating and obesity, and ongoing resistance to post-ingestive nutrient signals after significant weight loss may in part explain the high rate of weight regain after successful weight loss.


Asunto(s)
Dopamina , Obesidad , Masculino , Femenino , Humanos , Estudios Cruzados , Pérdida de Peso , Encéfalo , Nutrientes , Glucosa , Lípidos
12.
Netw Neurosci ; 7(1): 299-321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37339322

RESUMEN

Executive functioning (EF) is a higher order cognitive process that is thought to depend on a network organization facilitating integration across subnetworks, in the context of which the central role of the fronto-parietal network (FPN) has been described across imaging and neurophysiological modalities. However, the potentially complementary unimodal information on the relevance of the FPN for EF has not yet been integrated. We employ a multilayer framework to allow for integration of different modalities into one 'network of networks.' We used diffusion MRI, resting-state functional MRI, MEG, and neuropsychological data obtained from 33 healthy adults to construct modality-specific single-layer networks as well as a single multilayer network per participant. We computed single-layer and multilayer eigenvector centrality of the FPN as a measure of integration in this network and examined their associations with EF. We found that higher multilayer FPN centrality, but not single-layer FPN centrality, was related to better EF. We did not find a statistically significant change in explained variance in EF when using the multilayer approach as compared to the single-layer measures. Overall, our results show the importance of FPN integration for EF and underline the promise of the multilayer framework toward better understanding cognitive functioning.

13.
PLoS One ; 18(3): e0282284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36862721

RESUMEN

In perinatally HIV-infected (PHIV) children, cross-sectional studies reported on subtle structural retinal differences and found associations between the retina and structural brain changes. Our objective is to investigate whether neuroretinal development in PHIV children is similar to the development in healthy matched controls and to explore associations with the brain structure. We measured RT using optical coherence tomography (OCT) on two occasions in 21 PHIV children or adolescents and 23 matched controls-all with good visual acuity-with a mean interval of 4.6 years (SD 0.3). We also included 22 participants (11 PHIV children and 11 controls) together with the follow-up group for a cross-sectional assessment using a different OCT device. Magnetic resonance imaging (MRI) was used to assess the white matter microstructure. We used linear (mixed) models to assess changes in RT and its determinants (over time), adjusting for age and sex. The development of the retina was similar between the PHIV adolescents and controls. In our cohort, we found that changes in the peripapillary RNFL was significantly associated with changes in WM microstructural makers: fractional anisotropy (coefficient = 0.030, p = 0.022) and radial diffusivity (coefficient = -0.568, p = 0.025). We found comparable RT between groups. A thinner pRNFL was associated with lower WM volume (coefficient = 0.117, p = 0.030). PHIV children or adolescents appear to have a similar development of the retinal structure. In our cohort, the associations between RT and MRI biomarkers underscore the relation between retina and brain.


Asunto(s)
Infecciones por VIH , VIH , Adolescente , Niño , Humanos , Estudios Transversales , Infecciones por VIH/diagnóstico por imagen , Anisotropía , Retina/diagnóstico por imagen
14.
Neurology ; 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35940898

RESUMEN

BACKGROUND AND OBJECTIVES: Despite effective combination antiretroviral therapy (cART), adolescents with perinatally acquired HIV (PHIV) exhibit cognitive impairment, of which structural changes could be the underlying pathophysiological mechanism. Prior MRI studies found lower brain volumes, more white matter (WM) hyperintensities (WMH) volume, lower WM integrity, and differences in cerebral blood flow (CBF). However, these findings may be confounded by adoption status, as the large portion PHIV adolescents have been adopted. Adoption has been associated with malnutrition and neglect which in turn may have affected brain development. We investigated the long-term effects of PHIV on the brain, while minimizing the confounding effect of adoption status. METHODS: We determined whole brain gray matter (GM) and WM volume with 3D T1-weighted scans; total WMH volume with fluid-attenuated inversion recovery (FLAIR); CBF in the following regions of interest (ROIs): WM, GM and subcortical GM with arterial spin labeling (ASL); and whole brain WM microstructural markers: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) with diffusion tensor imaging (DTI) in cART treated PHIV adolescents visiting our outpatient clinic in Amsterdam and controls matched for age, sex, ethnic origin, socio-economic status, and adoption status. We assessed differences in neuroimaging parameters between PHIV adolescents and controls using linear regression models adjusted for age and sex and applied multiple comparisons correction. RESULTS: 35 PHIV adolescents and 38 controls were included with a median age (years) of 14.9 (IQR: 10.7-18.5) and 15.6 (IQR:11.1-17.6), respectively with a similar rate of adoption. We found a lower overall FA (beta = -0.012; p<0.014, -2.4%), higher MD (beta = 0.014, p = 0.014, 1.3%) and higher RD (beta = 0.02, p = 0.014, 3.3%) in PHIV adolescents vs. adoption-matched controls, but no differences in AD. We found comparable GM, WM and WMH volume, and CBF in ROIs between PHIV adolescents and controls. We did not find an association between cognitive profiles and WM microstructural markers in PHIV adolescents. DISCUSSION: Irrespective of adoption status, PHIV adolescents exhibited subtle lower WM integrity. Our findings may point towards early-acquired WM microstructural alterations associated with HIV.

15.
Hum Brain Mapp ; 43(15): 4664-4675, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35781371

RESUMEN

Prior studies suggest that methylphenidate, the primary pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), alters functional brain connectivity. As the neurotransmitter systems targeted by methylphenidate undergo significant alterations throughout development, the effects of methylphenidate on functional connectivity may also be modulated by age. Therefore, we assessed the effects of a single methylphenidate challenge on brain network connectivity in stimulant-treatment naïve children and adults with ADHD. We obtained resting-state functional MRI from 50 boys (10-12 years of age) and 49 men (23-40 years of age) with ADHD (DSM IV, all subtypes), before and after an oral challenge with 0.5 mg/kg methylphenidate; and from 11 boys and 12 men as typically developing controls. Connectivity strength (CS), eigenvector centrality (EC), and betweenness centrality (BC) were calculated for the striatum, thalamus, dorsal anterior cingulate cortex (dACC), and prefrontal cortex (PFC). In line with our hypotheses, we found that methylphenidate decreased measures of connectivity and centrality in the striatum and thalamus in children with ADHD, but increased the same metrics in adults with ADHD. Surprisingly, we found no major effects of methylphenidate in the dACC and PFC in either children or adults. Interestingly, pre-methylphenidate, participants with ADHD showed aberrant connectivity and centrality compared to controls predominantly in frontal regions. Our findings demonstrate that methylphenidate's effects on connectivity of subcortical regions are age-dependent in stimulant-treatment naïve participants with ADHD, likely due to ongoing maturation of dopamine and noradrenaline systems. These findings highlight the importance for future studies to take a developmental perspective when studying the effects of methylphenidate treatment.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Metilfenidato , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Encéfalo , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Niño , Dopamina , Humanos , Imagen por Resonancia Magnética , Masculino , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Persona de Mediana Edad , Norepinefrina
16.
Haematologica ; 107(11): 2708-2719, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35548868

RESUMEN

Silent cerebral infarcts (SCI) are common in patients with sickle cell disease (SCD) and are thought to be caused by a mismatch between oxygen delivery and consumption. Functional cerebrovascular shunting is defined as reduced oxygen offloading due to the rapid transit of blood through the capillaries caused by increased flow and has been suggested as a potential mechanism underlying reduced oxygenation and SCI. We investigated the venous arterial spin labeling signal (VS) in the sagittal sinus as a proxy biomarker of cerebral functional shunting, and its association with hemodynamic imaging and hematological laboratory parameters. We included 28 children and 38 adults with SCD, and ten healthy racematched adult controls. VS, cerebral blood flow (CBF), velocity in the brain feeding arteries, oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) were measured before and after acetazolamide administration. VS was higher in patients with SCD compared to controls (P<0.01) and was increased after acetazolamide administration in all groups (P<0.01). VS was primarily predicted by CBF (P<0.01), but CBF-corrected VS was also associated with decreased CMRO2 (P<0.01). Additionally, higher disease severity defined by low hemoglobin and increased hemolysis was associated with higher CBF-corrected VS. Finally, CMRO2 was negatively correlated with fetal hemoglobin, and positively correlated with lactate dehydrogenase, which could be explained by changes in oxygen affinity. These findings provide evidence for cerebral functional shunting and encourage future studies investigating the potential link to aberrant capillary exchange in SCD.


Asunto(s)
Anemia de Células Falciformes , Imagen por Resonancia Magnética , Adulto , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Acetazolamida , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Oxígeno/metabolismo , Infarto Cerebral , Consumo de Oxígeno/fisiología
17.
J Clin Endocrinol Metab ; 107(6): e2590-e2599, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35134184

RESUMEN

CONTEXT: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) cause less weight loss than expected based on urinary calorie excretion. This may be explained by SGLT2i-induced alterations in central reward and satiety circuits, leading to increased appetite and food intake. Glucagon-like peptide-1 receptor agonists are associated with reduced appetite and body weight, mediated by direct and indirect central nervous system (CNS) effects. OBJECTIVE: We investigated the separate and combined effects of dapagliflozin and exenatide on the CNS in participants with obesity and type 2 diabetes. METHODS: This was a 16-week, double-blind, randomized, placebo-controlled trial. Obese participants with type 2 diabetes (n = 64, age 63.5 ±â€…0.9 years, BMI 31.7 ±â€…0.6 kg/m2) were randomized (1:1:1:1) to dapagliflozin 10 mg with exenatide-matched placebo, exenatide twice daily 10 µg with dapagliflozin-matched placebo, dapagliflozin and exenatide, or double placebo. Using functional MRI, the effects of treatments on CNS responses to viewing food pictures were assessed after 10 days and 16 weeks of treatment. RESULTS: After 10 days, dapagliflozin increased, whereas exenatide decreased CNS activation in the left putamen. Combination therapy had no effect on responses to food pictures. After 16 weeks, no changes in CNS activation were observed with dapagliflozin, but CNS activation was reduced with dapagliflozin-exenatide in right amygdala. CONCLUSION: The early increase in CNS activation with dapagliflozin may contribute to the discrepancy between observed and expected weight loss. In combination therapy, exenatide blunted the increased CNS activation observed with dapagliflozin. These findings provide further insights into the weight-lowering mechanisms of SGLT2i and GLP-1 receptor agonists.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Bencidrilo , Glucemia , Encéfalo/diagnóstico por imagen , Señales (Psicología) , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Método Doble Ciego , Exenatida , Glucósidos , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Pérdida de Peso
18.
Brain Imaging Behav ; 16(2): 680-691, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34524649

RESUMEN

Understanding the neural mechanisms of emotional reactivity in Attention-Deficit/Hyperactivity Disorder (ADHD) may help develop more effective treatments that target emotion dysregulation. In adult ADHD, emotion regulation problems cover a range of dimensions, including emotional reactivity (ER). One important process that could underlie an impaired ER in ADHD might be impaired working memory (WM) processing. We recently demonstrated that taxing WM prior to the exposure of emotionally salient stimuli reduced physiological and subjective reactivity to such cues in heavy drinkers, suggesting lasting effects of WM activation on ER. Here, we investigated neural mechanisms that could underlie the interaction between WM and ER in adult ADHD participants. We included 30 male ADHD participants and 30 matched controls. Participants performed a novel functional magnetic resonance imaging paradigm in which active WM-blocks were alternated with passive blocks of negative and neutral images. We demonstrated group-independent significant main effects of negative emotional images on amygdala activation, and WM-load on paracingulate gyrus and dorsolateral prefrontal cortex activation. Contrary to earlier reports in adolescent ADHD, no impairments were found in neural correlates of WM or ER. Moreover, taxing WM did not alter the neural correlates of ER in either ADHD or control participants. While we did find effects on the amygdala, paCG, and dlPFC activation, we did not find interactions between WM and ER, possibly due to the relatively unimpaired ADHD population and a well-matched control group. Whether targeting WM might be effective in participants with ADHD with severe ER impairments remains to be investigated.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Adulto , Emociones , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología
19.
Diagnostics (Basel) ; 11(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34943640

RESUMEN

Dopaminergic signaling is believed to be related to autistic traits. We conducted an exploratory 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine positron emission tomography/computed tomography ([18F]-FDOPA PET/CT) study, to examine cerebral [18F]-FDOPA influx constant (kicer min-1), reflecting predominantly striatal dopamine synthesis capacity and a mixed monoaminergic innervation in extrastriatal neurons, in 44 adults diagnosed with autism spectrum disorder (ASD) and 22 controls, aged 18 to 30 years. Autistic traits were assessed with the Autism Spectrum Quotient (AQ). Region-of-interest and voxel-based analyses showed no statistically significant differences in kicer between autistic adults and controls. In autistic adults, striatal kicer was significantly, negatively associated with AQ attention to detail subscale scores, although Bayesian analyses did not support this finding. In conclusion, among autistic adults, specific autistic traits can be associated with reduced striatal dopamine synthesis capacity. However, replication of this finding is necessary.

20.
Neurobiol Stress ; 15: 100410, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34926732

RESUMEN

BACKGROUND: Social stress is an important environmental risk factor for the development of psychiatric disorders, including depression and anxiety disorders. Social stress paradigms are commonly used in rats and mice to gain insight into the pathogenesis of these disorders. The social instability stress (SIS) paradigm entails frequent (up to several times a week) introduction of one or multiple unfamiliar same-sex home-cage partners. The subsequent recurring formation of a new social hierarchy results in chronic and unpredictable physical and social stress. PURPOSE: We compare and discuss the stress-related behavioral and physiological impact of SIS protocols in rat and mouse, and address limitations due to protocol variability. We further provide practical recommendations to optimize reproducibility of SIS protocols. METHODS: We conducted a systematic review in accordance with the PRISMA statement in the following three databases: PubMed, Web of Science and Scopus. Our search strategy was not restricted to year of publication but was limited to articles in English that were published in peer-reviewed journals. Search terms included "social* instab*" AND ("animal" OR "rodent" OR "rat*" OR "mice" OR "mouse"). RESULTS: Thirty-three studies met our inclusion criteria. Fifteen articles used a SIS protocol in which the composition of two cage mates is altered daily for sixteen days (SIS16D). Eleven articles used a SIS protocol in which the composition of four cage mates is altered twice per week for 49 days (SIS49D). The remaining seven studies used SIS protocols that differed from these two protocols in experiment duration or cage mate quantity. Behavioral impact of SIS was primarily assessed by quantifying depressive-like, anxiety-like, social-, and cognitive behavior. Physiological impact of SIS was primarily assessed using metabolic parameters, hypothalamus-pituitary-adrenal axis activity, and the assessment of neurobiological parameters such as neuroplasticity and neurogenesis. CONCLUSION: Both shorter and longer SIS protocols induce a wide range of stress-related behavioral and physiological impairments that are relevant for the pathophysiology of depression and anxiety disorders. To date, SIS16D has only been reported in rats, whereas SIS49D has only been reported in mice. Given this species-specific application as well as variability in reported SIS protocols, additional studies should determine whether SIS effects are protocol duration- or species-specific. We address several issues, including a lack of consistency in the used SIS protocols, and suggest practical, concrete improvements in design and reporting of SIS protocols to increase standardization and reproducibility of this etiologically relevant preclinical model of social stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...