Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Commun Biol ; 6(1): 691, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402774

RESUMEN

Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of key genes in bone biology, particularly to intramembranous ossification, not captured at other skeletal sites. We perform a genome-wide association meta-analysis (n ~ 43,800) of SK-BMD, identifying 59 loci, collectively explaining 12.5% of the trait variance. Association signals cluster within gene-sets involved in skeletal development and osteoporosis. Among the four novel loci (ZIC1, PRKAR1A, AZIN1/ATP6V1C1, GLRX3), there are factors implicated in intramembranous ossification and as we show, inherent to craniosynostosis processes. Functional follow-up in zebrafish confirms the importance of ZIC1 on cranial suture patterning. Likewise, we observe abnormal cranial bone initiation that culminates in ectopic sutures and reduced BMD in mosaic atp6v1c1 knockouts. Mosaic prkar1a knockouts present asymmetric bone growth and, conversely, elevated BMD. In light of this evidence linking SK-BMD loci to craniofacial abnormalities, our study provides new insight into the pathophysiology, diagnosis and treatment of skeletal diseases.


Asunto(s)
Densidad Ósea , Craneosinostosis , Animales , Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Pez Cebra/genética , Cráneo , Craneosinostosis/genética , Factores de Transcripción/genética
2.
Sci Rep ; 12(1): 574, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022422

RESUMEN

High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.


Asunto(s)
Presión Sanguínea , Biología Computacional , Hipertensión/sangre , Fosfolípidos/sangre , Adulto , Anciano , Biomarcadores/sangre , Factores de Riesgo Cardiometabólico , Estudios de Cohortes , Diástole , Femenino , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Sístole
3.
Arterioscler Thromb Vasc Biol ; 39(12): 2542-2552, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597446

RESUMEN

OBJECTIVE: The retina may provide readily accessible imaging biomarkers of global cardiovascular health. Increasing evidence suggests variation in retinal vascular traits is highly heritable. This study aimed to identify the genetic determinants of retinal vascular traits. Approach and Results: We conducted a meta-analysis of genome-wide association studies for quantitative retinal vascular traits derived using semi-automatic image analysis of digital retinal photographs from the GoDARTS (Genetics of Diabetes Audit and Research in Tayside; N=1736) and ORCADES (Orkney Complex Disease Study; N=1358) cohorts. We identified a novel genome-wide significant locus at 19q13 (ACTN4/CAPN12) for retinal venular tortuosity (TortV), and one at 13q34 (COL4A2) for retinal arteriolar tortuosity (TortA); these 2 loci were subsequently confirmed in 3 independent cohorts (Ntotal=1413). In the combined analysis of discovery and replication cohorts, the lead single-nucleotide polymorphism in ACTN4/CAPN12 was rs1808382 (ßs.d.=-0.109; SE=0.015; P=2.39×10-13) and in COL4A2 was rs7991229 (ßs.d.=0.103; SE=0.015; P=4.66×10-12). Notably, the ACTN4/CAPN12 locus associated with TortV is also associated with coronary artery disease, heart rate, and atrial fibrillation. CONCLUSIONS: Genetic determinants of retinal vascular tortuosity are also linked to cardiovascular health. These findings provide a molecular pathophysiological foundation for the use of retinal vascular traits as biomarkers for cardiovascular diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Enfermedades de la Retina/genética , Vasos Retinianos/anomalías , Vénulas/anomalías , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/etiología , Humanos , Fenotipo , Enfermedades de la Retina/complicaciones , Enfermedades de la Retina/diagnóstico , Vasos Retinianos/diagnóstico por imagen , Factores de Riesgo
4.
Am J Hum Genet ; 103(5): 691-706, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388399

RESUMEN

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.


Asunto(s)
Sitios Genéticos/genética , Inflamación/genética , Redes y Vías Metabólicas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Índice de Masa Corporal , Proteína C-Reactiva/genética , Niño , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Análisis de la Aleatorización Mendeliana/métodos , Persona de Mediana Edad , Esquizofrenia/genética , Esquizofrenia/metabolismo , Adulto Joven
5.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304378

RESUMEN

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Asunto(s)
Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Adolescente , Factores de Edad , Animales , Niño , Preescolar , Sitios Genéticos , Humanos , Lactante , Recién Nacido , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Análisis de Regresión
6.
Ann Rheum Dis ; 77(3): 378-385, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29170203

RESUMEN

OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.


Asunto(s)
Cromosomas Humanos Par 2/genética , Fracturas Osteoporóticas/genética , Fracturas de la Columna Vertebral/genética , Anciano , Anciano de 80 o más Años , Densidad Ósea/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Posmenopausia , Sitios de Carácter Cuantitativo
7.
Nat Commun ; 8(1): 910, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030599

RESUMEN

Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan.


Asunto(s)
Cadenas alfa de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Estilo de Vida , Lipoproteína(a)/genética , Longevidad/genética , Alelos , Índice de Masa Corporal , Enfermedad Coronaria/sangre , Enfermedad Coronaria/etiología , Educación , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Resistencia a la Insulina/genética , Lipoproteínas HDL/sangre , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Obesidad/complicaciones , Obesidad/genética , Polimorfismo de Nucleótido Simple , Fumar/efectos adversos , Factores Socioeconómicos
8.
Nat Genet ; 49(6): 834-841, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28436984

RESUMEN

The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to ∼370,000 women, we identify 389 independent signals (P < 5 × 10-8) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ∼7.4% of the population variance in age at menarche, corresponding to ∼25% of the estimated heritability. We implicate ∼250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Menarquia/genética , Neoplasias/genética , Pubertad/genética , Ribonucleoproteínas/genética , Adolescente , Factores de Edad , Índice de Masa Corporal , Proteínas de Unión al Calcio , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Impresión Genómica , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factores de Riesgo , Ubiquitina-Proteína Ligasas
9.
Nat Commun ; 7: 11174, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27029810

RESUMEN

Lifespan is a trait of enormous personal interest. Research into the biological basis of human lifespan, however, is hampered by the long time to death. Using a novel approach of regressing (272,081) parental lifespans beyond age 40 years on participant genotype in a new large data set (UK Biobank), we here show that common variants near the apolipoprotein E and nicotinic acetylcholine receptor subunit alpha 5 genes are associated with lifespan. The effects are strongly sex and age dependent, with APOE ɛ4 differentially influencing maternal lifespan (P=4.2 × 10(-15), effect -1.24 years of maternal life per imputed risk allele in parent; sex difference, P=0.011), and a locus near CHRNA3/5 differentially affecting paternal lifespan (P=4.8 × 10(-11), effect -0.86 years per allele; sex difference P=0.075). Rare homozygous carriers of the risk alleles at both loci are predicted to have 3.3-3.7 years shorter lives.


Asunto(s)
Apolipoproteínas E/genética , Longevidad/genética , Proteínas del Tejido Nervioso/genética , Receptores Nicotínicos/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Apolipoproteínas E/fisiología , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/fisiología , Modelos de Riesgos Proporcionales , Receptores Nicotínicos/fisiología , Factores Sexuales , Reino Unido
10.
NPJ Aging Mech Dis ; 1: 15011, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28721259

RESUMEN

BACKGROUND: Individuals with exceptional longevity and their offspring have significantly larger high-density lipoprotein concentrations (HDL-C) particle sizes due to the increased homozygosity for the I405V variant in the cholesteryl ester transfer protein (CETP) gene. In this study, we investigate the association of CETP and HDL-C further to identify novel, independent CETP variants associated with HDL-C in humans. METHODS: We performed a meta-analysis of HDL-C within the CETP region using 59,432 individuals imputed with 1000 Genomes data. We performed replication in an independent sample of 47,866 individuals and validation was done by Sanger sequencing. RESULTS: The meta-analysis of HDL-C within the CETP region identified five independent variants, including an exonic variant and a common intronic insertion. We replicated these 5 variants significantly in an independent sample of 47,866 individuals. Sanger sequencing of the insertion within a single family confirmed segregation of this variant. The strongest reported association between HDL-C and CETP variants, was rs3764261; however, after conditioning on the five novel variants we identified the support for rs3764261 was highly reduced (ßunadjusted=3.179 mg/dl (P value=5.25×10-509), ßadjusted=0.859 mg/dl (P value=9.51×10-25)), and this finding suggests that these five novel variants may partly explain the association of CETP with HDL-C. Indeed, three of the five novel variants (rs34065661, rs5817082, rs7499892) are independent of rs3764261. CONCLUSIONS: The causal variants in CETP that account for the association with HDL-C remain unknown. We used studies imputed to the 1000 Genomes reference panel for fine mapping of the CETP region. We identified and validated five variants within this region that may partly account for the association of the known variant (rs3764261), as well as other sources of genetic contribution to HDL-C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...