Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 243: 125332, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31751928

RESUMEN

The potential of biochar to enhance phytorestoration of hexavalent chromium [Cr(VI)]-contaminated soils was investigated. Rooted cuttings of Ficus elastica Roxb. Ex Hornem were transplanted to soil treated with 0 or 25 mg kg-1 Cr(VI), ‒Cr and +Cr designations respectively, and amended with cattle manure-derived biochar at 0, 10 and 50 g kg-1. Plants were grown for 180 d in a temperature-controlled greenhouse. In the ‒Cr treatment, biochar addition enhanced plant growth without affecting plant water status, leaf nutrient levels, photochemical efficiency, or hormone levels. In the absence of biochar, Ficus growth in the +Cr treatment was stunted, exhibiting decreased leaf and root relative water content and photochemical efficiency. Adding biochar to +Cr soil resulted in decreased Cr uptake into plant tissues and alleviated the toxic effects of soil Cr(VI) on plant growth and physiology, including decreased leaf lipid peroxidation. High-resolution electron microscopy and spectroscopy elucidated the biochar role in decreasing Cr mobility, bioavailability, and phytotoxicity. Spectroscopic evidence is suggestive that biochar mediated the reduction of Cr(VI) to Cr(III), which was subsequently incorporated into organomineral agglomerates formed at biochar surfaces. The dual function of biochar in improving F. elastica performance and detoxifying Cr(VI) demonstrates that biochar holds much potential for enhancing phytorestoration of Cr(VI)-contaminated soils.


Asunto(s)
Carbón Orgánico/química , Cromo/toxicidad , Ficus/fisiología , Contaminantes del Suelo/toxicidad , Animales , Disponibilidad Biológica , Bovinos , Cromo/química , Estiércol , Desarrollo de la Planta , Goma , Suelo/química , Contaminantes del Suelo/química
2.
Environ Sci Pollut Res Int ; 27(1): 691-703, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31808096

RESUMEN

When biochar (BC) is applied to soil, one process that can alter its properties and contaminant sorption is the leaching of minerals and dissolved organic carbon (DOC). This study investigated changes in properties of three BCs (cattle manure, grain husk, and wood chips), due to leaching, and the subsequent impact on sorption of trichloroethylene (TCE) and tetrachloroethylene (PCE). The manure-derived BC released 27.4 mg g-1 DOC, which is over ten times more than that measured for the two plant-based BCs (2.5 and 1.5 mg g-1 DOC for grain husk and wood chips, respectively). In all leachates, potassium is the dominant cation, whereas chloride, sulfate, and phosphate are the main anions. In total, the manure-derived biochar released the highest sum of total ions (73.1 mg g-1), followed by BC produced from grain husk (15.5 mg g-1) and wood chips (1.2 mg g-1). Leaching increased external surface area, mesopore volume, and hydrophobicity of the manure-derived BC and decreased its polarity. This enhanced sorption via partitioning. In plant-based BCs, micropore volume and size distribution were altered, most likely through the un-blocking of pores, causing increased sorption via pore-filling for both TCE and PCE. The results indicate that, depending on feedstock material, BC leaching can alter the environmental fate of organic compounds.


Asunto(s)
Carbón Orgánico/química , Contaminantes Ambientales/química , Adsorción , Grano Comestible , Interacciones Hidrofóbicas e Hidrofílicas , Estiércol , Suelo , Tricloroetileno , Madera
3.
Sci Total Environ ; 626: 953-961, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29898560

RESUMEN

Adding biochar to Zn-contaminated soil can immobilize excess Zn and promote plant biomass growth. This was seen previously over the course of a 180-day planted pot trial involving two types of biochar (cattle manure, CM, and grain husk, GH) in a Zn-contaminated soil. Both biochars alleviated Zn-induced phytotoxicity to Ficus by immobilizing Zn and reducing its uptake by the plant, but to different extents. The aim of the current study was to delve into the in-soil mechanisms involved in biochar-mediated Zn immobilization. Biochar particles were excavated from the pot soils. Fresh and aged biochar particles were examined by high-resolution scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), field-emission electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The physical and chemical properties of the biochars had changed over the 180 days. SEM-EDS and EPMA indicated that organo-mineral micro-agglomerates had formed on biochar surfaces and in pores. Some of the Zn immobilized by the biochars was bound in the organo-mineral complexes of these agglomerates. XPS and FTIR showed that the complexes had a high concentration of oxygenated functional groups which facilitated Zn binding and encapsulation. The micro-agglomerates were similar in structure and composition to those observed on biochars having resided for much longer times in soils, or having been subjected to accelerated aging. Overall, Zn immobilization by the CM biochar was greater than by the GH biochar, due to its higher alkalinity, higher concentration of available negatively charged groups, and greater accretion of organo-mineral layers. These findings are suggestive that biochar-assisted phytorestoration of heavy metal-contaminated soils can be optimized through selection of biochar having such traits. It is hypothesized that metals may be continually taken up in such micro-agglomerates, since they continue to form over the lifetime of the biochar in the soil.


Asunto(s)
Carbón Orgánico/química , Contaminantes del Suelo/química , Zinc/química , Biomasa , Restauración y Remediación Ambiental , Estiércol , Metales Pesados/química , Suelo/química
4.
Chemosphere ; 203: 34-43, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29605747

RESUMEN

Biochar is increasingly deemed a potential sorbent for contaminants in soil and water remediation. We tested three biochars from different feedstocks (cattle manure, grain husk, and wood chips) produced at relatively low pyrolysis temperature (450 °C), for their sorption behavior towards trichloroethylene (TCE) and tetrachloroethylene (PCE) in single- and bi-solute systems. In single-solute experiments, all biochars show stronger sorption for TCE (about 50% based on solubility-normalized Freundlich coefficients). The lower sorption of PCE is attributed to steric effects, e.g. size exclusion in small micropores and specific interactions. Plant-derived, carbon-rich biochars with high specific surface area and microporosity predominantly sorb via pore-filling, as also observed in activated carbon. Biochar produced from manure, with higher ash content and polarity, and smaller total pore volume (PVtot), shows significant contribution of partitioning. These findings also apply to bi-solute systems. TCE and PCE show different competition behavior depending on biochar properties. Plant-based biochars are pore-filling-dominated and show strong competition. However, competition behavior in microporous biochars depends on the concentration range. Manure biochar with high polarity and low PVtot shows significant partitioning and therefore less competition. Compared to the plant-based chars competition in manure biochar is not concentration-dependent. These results indicate that biochars with a large fraction of non-carbonized phase facilitate non-competitive sorption and might be a valuable sorbent in mixed contaminant systems.


Asunto(s)
Carbón Orgánico/química , Grano Comestible/química , Hidrocarburos Clorados/química , Estiércol , Tricloroetileno/química , Madera/química , Adsorción , Animales , Bovinos , Tricloroetileno/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...