Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 2(2): e000159, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23598272

RESUMEN

BACKGROUND: Ischemia-reperfusion (I/R) studies have implicated oxidant stress, the mitochondrial permeability transition pore (mPTP), and poly(ADP-ribose) polymerase (PARP) as contributing factors in myocardial cell death. However, the interdependence of these factors in the intact, blood-perfused heart is not known. We therefore wanted to determine whether oxidant stress, mPTP opening, and PARP activity contribute to the same death pathway after myocardial I/R. METHODS AND RESULTS: A murine left anterior descending coronary artery (LAD) occlusion (30 minutes) and release (1 to 4 hours) model was employed. Experimental groups included controls and antioxidant-treated, mPTP-inhibited, or PARP-inhibited hearts. Antioxidant treatment prevented oxidative damage, mPTP opening, ATP depletion, and PARP activity, placing oxidant stress as the proximal death trigger. Genetic deletion of cyclophilin D (CypD(-/-)) prevented loss of total NAD(+) and PARP activity, and mPTP-mediated loss of mitochondrial function. Control hearts showed progressive mitochondrial depolarization and loss of ATP from 1.5 to 4 hours of reperfusion, but not outer mitochondrial membrane rupture. Neither genetic deletion of PARP-1 nor its pharmacological inhibition prevented the initial mPTP-mediated depolarization or loss of ATP, but PARP ablation did allow mitochondrial recovery by 4 hours of reperfusion. CONCLUSIONS: These results indicate that oxidant stress, the mPTP, and PARP activity contribute to a single death pathway after I/R in the heart. PARP activation undermines cell survival by preventing mitochondrial recovery after mPTP opening early in reperfusion. This suggests that PARP-mediated prolongation of mitochondrial depolarization contributes significantly to cell death via an energetic crisis rather than by mitochondrial outer membrane rupture.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo/fisiología , Poli(ADP-Ribosa) Polimerasas/fisiología , Animales , Muerte Celular , Supervivencia Celular , Ciclofilinas/genética , Modelos Animales de Enfermedad , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Isquemia Miocárdica/enzimología , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/fisiopatología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Especies Reactivas de Oxígeno/metabolismo
2.
Am J Respir Crit Care Med ; 187(4): 424-32, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23328522

RESUMEN

RATIONALE: The role of reactive oxygen species (ROS) signaling in the O(2) sensing mechanism underlying acute hypoxic pulmonary vasoconstriction (HPV) has been controversial. Although mitochondria are important sources of ROS, studies using chemical inhibitors have yielded conflicting results, whereas cellular models using genetic suppression have precluded in vivo confirmation. Hence, genetic animal models are required to test mechanistic hypotheses. OBJECTIVES: We tested whether mitochondrial Complex III is required for the ROS signaling and vasoconstriction responses to acute hypoxia in pulmonary arteries (PA). METHODS: A mouse permitting Cre-mediated conditional deletion of the Rieske iron-sulfur protein (RISP) of Complex III was generated. Adenoviral Cre recombinase was used to delete RISP from isolated PA vessels or smooth muscle cells (PASMC). MEASUREMENTS AND MAIN RESULTS: In PASMC, RISP depletion abolished hypoxia-induced increases in ROS signaling in the mitochondrial intermembrane space and cytosol, and it abrogated hypoxia-induced increases in [Ca(2+)](i). In isolated PA vessels, RISP depletion abolished hypoxia-induced ROS signaling in the cytosol. Breeding the RISP mice with transgenic mice expressing tamoxifen-activated Cre in smooth muscle permitted the depletion of RISP in PASMC in vivo. Precision-cut lung slices from those mice revealed that RISP depletion abolished hypoxia-induced increases in [Ca(2+)](i) of the PA. In vivo RISP depletion in smooth muscle attenuated the acute hypoxia-induced increase in right ventricular systolic pressure in anesthetized mice. CONCLUSIONS: Acute hypoxia induces superoxide release from Complex III of smooth muscle cells. These oxidant signals diffuse into the cytosol and trigger increases in [Ca(2+)](i) that cause acute hypoxic pulmonary vasoconstriction.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Circulación Pulmonar , Superóxidos/metabolismo , Animales , Citosol/metabolismo , Modelos Animales de Enfermedad , Complejo III de Transporte de Electrones/genética , Hipoxia/genética , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Antioxid Redox Signal ; 17(3): 460-70, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22229392

RESUMEN

AIMS: Oxygen is a pulmonary vasodilator, but data suggest high O(2) concentrations impede that response. We previously reported 24 h of 100% O(2) increased phosphodiesterase 5 (PDE5) activity in fetal pulmonary artery smooth muscle cells (FPASMC) and in ventilated neonatal lambs. PDE5 degrades cyclic GMP (cGMP) and inhibits nitric oxide (NO)-mediated cGMP-dependent vasorelaxation. We sought to determine the mechanism by which hyperoxia initiates reactive oxygen species (ROS) production and regulates PDE5. RESULTS: Thirty minutes of hyperoxia increased mitochondrial ROS versus normoxia (30.3±1.7% vs. 21.1±2.8%), but had no effect on cytosolic ROS, measured by roGFP, a ratiometric protein thiol redox sensor. Hyperoxia increased PDE5 activity (220±39%) and decreased cGMP responsiveness to NO (37±17%). Mitochondrial catalase overexpression attenuated hyperoxia-induced mitochondrial roGFP oxidation, compared to FPASMC infected with empty adenoviral vector (50±3% of control) or mitochondrial superoxide dismutase. MitoTEMPO, mitochondrial catalase, and DT-3, a cGMP-dependent protein kinase I alpha inhibitor, decreased PDE5 activity (32±13%, 26±21%, and 63±10% of control, respectively), and restored cGMP responsiveness to NO (147±16%,172±29%, and 189±43% of control, respectively). C57Bl6 mice exposed to 90%-100% O(2) for 45 min±mechanical ventilation had increased PA PDE5 activity (206±39% and 235±75%, respectively). INNOVATION: This is the first description that hyperoxia induces ROS in the mitochondrial matrix prior to the cytosol. Our results indicate that short hyperoxia exposures can produce significant changes in critical cellular signaling pathways. CONCLUSIONS: These results indicate that mitochondrial matrix oxidant signals generated during hyperoxia, specifically H(2)O(2), activate PDE5 in a cGMP-dependent protein kinase-dependent manner in pulmonary vascular smooth muscle cells.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Activación Enzimática , Hiperoxia/enzimología , Mitocondrias Musculares/metabolismo , Miocitos del Músculo Liso/enzimología , Arteria Pulmonar/enzimología , Animales , Antioxidantes/farmacología , Catalasa/metabolismo , Hipoxia de la Célula , Células Cultivadas , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Feto , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/enzimología , Músculo Liso Vascular/citología , Óxido Nítrico/farmacología , Compuestos Organofosforados/farmacología , Oxidación-Reducción , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Piperidinas/farmacología , Arteria Pulmonar/citología , Purinas/farmacología , Oveja Doméstica , Citrato de Sildenafil , Sulfonas/farmacología , Superóxido Dismutasa/metabolismo
4.
Free Radic Biol Med ; 49(12): 1925-36, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20937380

RESUMEN

Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them.


Asunto(s)
Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Oxidantes/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vitamina K 3/farmacología , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Células Cultivadas , Embrión de Pollo , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Citocromos c/metabolismo , Activación Enzimática , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/metabolismo , Glutatión/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1 , Proteínas Recombinantes/metabolismo , Transducción de Señal , Estaurosporina/farmacología , Proteína bcl-X/metabolismo
5.
Circ Res ; 106(3): 526-35, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20019331

RESUMEN

RATIONALE: Recent studies have implicated mitochondrial reactive oxygen species (ROS) in regulating hypoxic pulmonary vasoconstriction (HPV), but controversy exists regarding whether hypoxia increases or decreases ROS generation. OBJECTIVE: This study tested the hypothesis that hypoxia induces redox changes that differ among subcellular compartments in pulmonary (PASMCs) and systemic (SASMCs) smooth muscle cells. METHODS AND RESULTS: We used a novel, redox-sensitive, ratiometric fluorescent protein sensor (RoGFP) to assess the effects of hypoxia on redox signaling in cultured PASMCs and SASMCs. Using genetic targeting sequences, RoGFP was expressed in the cytosol (Cyto-RoGFP), the mitochondrial matrix (Mito-RoGFP), or the mitochondrial intermembrane space (IMS-RoGFP), allowing assessment of oxidant signaling in distinct intracellular compartments. Superfusion of PASMCs or SASMCs with hypoxic media increased oxidation of both Cyto-RoGFP and IMS-RoGFP. However, hypoxia decreased oxidation of Mito-RoGFP in both cell types. The hypoxia-induced oxidation of Cyto-RoGFP was attenuated through the overexpression of cytosolic catalase in PASMCs. CONCLUSIONS: These results indicate that hypoxia causes a decrease in nonspecific ROS generation in the matrix compartment, whereas it increases regulated ROS production in the IMS, which diffuses to the cytosol of both PASMCs and SASMCs.


Asunto(s)
Hipoxia de la Célula/fisiología , Proteínas Fluorescentes Verdes/análisis , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Catalasa/biosíntesis , Catalasa/genética , Compartimento Celular , Células Cultivadas/metabolismo , Medios de Cultivo Condicionados/farmacología , Citosol/enzimología , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Mitocondrias/metabolismo , Oxidación-Reducción , Arteria Pulmonar/citología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Arteria Renal/citología , Vasoconstricción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA