Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Diabetes Care ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652672

RESUMEN

OBJECTIVE: To identify genetic risk factors for incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We conducted a multiancestry time-to-event genome-wide association study for incident CVD among people with T2D. We also tested 204 known coronary artery disease (CAD) variants for association with incident CVD. RESULTS: Among 49,230 participants with T2D, 8,956 had incident CVD events (event rate 18.2%). We identified three novel genetic loci for incident CVD: rs147138607 (near CACNA1E/ZNF648, hazard ratio [HR] 1.23, P = 3.6 × 10-9), rs11444867 (near HS3ST1, HR 1.89, P = 9.9 × 10-9), and rs335407 (near TFB1M/NOX3, HR 1.25, P = 1.5 × 10-8). Among 204 known CAD loci, 5 were associated with incident CVD in T2D (multiple comparison-adjusted P < 0.00024, 0.05/204). A standardized polygenic score of these 204 variants was associated with incident CVD with HR 1.14 (P = 1.0 × 10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.

2.
Genome Med ; 16(1): 63, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671457

RESUMEN

BACKGROUND: The clinical utility of genetic information for type 2 diabetes (T2D) prediction with polygenic scores (PGS) in ancestrally diverse, real-world US healthcare systems is unclear, especially for those at low clinical phenotypic risk for T2D. METHODS: We tested the association of PGS with T2D incidence in patients followed within a primary care practice network over 16 years in four hypothetical scenarios that varied by clinical data availability (N = 14,712): (1) age and sex; (2) age, sex, body mass index (BMI), systolic blood pressure, and family history of T2D; (3) all variables in (2) and random glucose; and (4) all variables in (3), HDL, total cholesterol, and triglycerides, combined in a clinical risk score (CRS). To determine whether genetic effects differed by baseline clinical risk, we tested for interaction with the CRS. RESULTS: PGS was associated with incident T2D in all models. Adjusting for age and sex only, the Hazard Ratio (HR) per PGS standard deviation (SD) was 1.76 (95% CI 1.68, 1.84) and the HR of top 5% of PGS vs interquartile range (IQR) was 2.80 (2.39, 3.28). Adjusting for the CRS, the HR per SD was 1.48 (1.40, 1.57) and HR of the top 5% of PGS vs IQR was 2.09 (1.72, 2.55). Genetic effects differed by baseline clinical risk ((PGS-CRS interaction p = 0.05; CRS below the median: HR 1.60 (1.43, 1.79); CRS above the median: HR 1.45 (1.35, 1.55)). CONCLUSIONS: Genetic information can help identify high-risk patients even among those perceived to be low risk in a clinical evaluation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Herencia Multifactorial , Humanos , Diabetes Mellitus Tipo 2/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Incidencia , Médicos de Atención Primaria , Adulto , Factores de Riesgo , Predisposición Genética a la Enfermedad , Estudios Longitudinales , Atención Primaria de Salud , Estudios de Cohortes
3.
Nat Med ; 30(4): 1065-1074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443691

RESUMEN

Type 2 diabetes (T2D) is a multifactorial disease with substantial genetic risk, for which the underlying biological mechanisms are not fully understood. In this study, we identified multi-ancestry T2D genetic clusters by analyzing genetic data from diverse populations in 37 published T2D genome-wide association studies representing more than 1.4 million individuals. We implemented soft clustering with 650 T2D-associated genetic variants and 110 T2D-related traits, capturing known and novel T2D clusters with distinct cardiometabolic trait associations across two independent biobanks representing diverse genetic ancestral populations (African, n = 21,906; Admixed American, n = 14,410; East Asian, n =2,422; European, n = 90,093; and South Asian, n = 1,262). The 12 genetic clusters were enriched for specific single-cell regulatory regions. Several of the polygenic scores derived from the clusters differed in distribution among ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a body mass index (BMI) of 30 kg m-2 in the European subpopulation and 24.2 (22.9-25.5) kg m-2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg m-2 in the East Asian group. Thus, these multi-ancestry T2D genetic clusters encompass a broader range of biological mechanisms and provide preliminary insights to explain ancestry-associated differences in T2D risk profiles.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Fenotipo , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética
4.
Nature ; 627(8003): 347-357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374256

RESUMEN

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Asunto(s)
Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Adipocitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/clasificación , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/genética , Células Endoteliales/metabolismo , Células Enteroendocrinas , Epigenómica , Predisposición Genética a la Enfermedad/genética , Islotes Pancreáticos/metabolismo , Herencia Multifactorial/genética , Enfermedad Arterial Periférica/complicaciones , Enfermedad Arterial Periférica/genética , Análisis de la Célula Individual
5.
Res Sq ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37886436

RESUMEN

We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from diverse groups, including non-European populations. We implemented soft clustering with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes with distinct cardiometabolic trait associations. The twelve genetic clusters were distinctively enriched for single-cell regulatory regions. Polygenic scores derived from the clusters differed in distribution between ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 (22.9-25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg/m2 in the East Asian group, explaining about 75% of the difference in BMI thresholds. Thus, these multi-ancestry T2D genetic subtypes encompass a broader range of biological mechanisms and help explain ancestry-associated differences in T2D risk profiles.

6.
medRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808701

RESUMEN

We meta-analyzed array data imputed with the TOPMed reference panel and whole-genome sequence (WGS) datasets and performed the largest, rare variant (minor allele frequency as low as 5×10-5) GWAS meta-analysis of type 2 diabetes (T2D) comprising 51,256 cases and 370,487 controls. We identified 52 novel variants at genome-wide significance (p<5 × 10-8), including 8 novel variants that were either rare or ancestry-specific. Among them, we identified a rare missense variant in HNF4A p.Arg114Trp (OR=8.2, 95% confidence interval [CI]=4.6-14.0, p = 1.08×10-13), previously reported as a variant implicated in Maturity Onset Diabetes of the Young (MODY) with incomplete penetrance. We demonstrated that the diabetes risk in carriers of this variant was modulated by a T2D common variant polygenic risk score (cvPRS) (carriers in the top PRS tertile [OR=18.3, 95%CI=7.2-46.9, p=1.2×10-9] vs carriers in the bottom PRS tertile [OR=2.6, 95% CI=0.97-7.09, p = 0.06]. Association results identified eight variants of intermediate penetrance (OR>5) in monogenic diabetes (MD), which in aggregate as a rare variant PRS were associated with T2D in an independent WGS dataset (OR=4.7, 95% CI=1.86-11.77], p = 0.001). Our data also provided support evidence for 21% of the variants reported in ClinVar in these MD genes as benign based on lack of association with T2D. Our work provides a framework for using rare variant imputation and WGS analyses in large-scale population-based association studies to identify large-effect rare variants and provide evidence for informing variant pathogenicity.

7.
medRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808749

RESUMEN

We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from diverse groups, including non-European populations. We implemented soft clustering with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes with distinct cardiometabolic trait associations. The twelve genetic clusters were distinctively enriched for single-cell regulatory regions. Polygenic scores derived from the clusters differed in distribution between ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 (22.9-25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg/m2 in the East Asian group, explaining about 75% of the difference in BMI thresholds. Thus, these multi-ancestry T2D genetic subtypes encompass a broader range of biological mechanisms and help explain ancestry-associated differences in T2D risk profiles.

8.
medRxiv ; 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37732255

RESUMEN

OBJECTIVE: The clinical utility of genetic information for type 2 diabetes (T2D) prediction with polygenic score (PGS) in ancestrally diverse, real-world US healthcare systems is unclear, especially for those at low clinical phenotypic risk for T2D. RESEARCH DESIGN AND METHODS: We tested the association of PGS with T2D incidence in patients followed within a primary care practice network over 16 years in four hypothetical scenarios that varied by clinical data availability (N = 14,712): 1) age and sex, 2) age, sex, BMI, systolic blood pressure, and family history of diabetes; 3) all variables in (2) and random glucose; 4) all variables in (3), HDL, total cholesterol, and triglycerides, combined in a clinical risk score (CRS). To determine whether genetic effects differed by baseline clinical risk, we tested for interaction with the CRS. RESULTS: PGS was associated with incident diabetes in all models. Adjusting for age and sex only, the Hazard Ratio (HR) per PGS standard deviation (SD) was 1.76 (95% CI 1.68, 1.84) and the HR of top 5% of PGS vs interquartile range (IQR) was 2.80 (2.39, 3.28). Adjusting for the CRS, the HR per SD was 1.48 (1.40, 1.57) and HR of top 5% of PGS vs IQR was 2.09 (1.72, 2.55). Genetic effects differed by baseline clinical risk [(PGS-CRS interaction p =0.05; CRS below the median: HR 1.60 (1.43, 1.79); CRS above the median: HR 1.45 (1.35, 1.55)]. CONCLUSIONS: Genetic information can help identify high-risk patients even among those perceived to be low risk in a clinical evaluation.

9.
medRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732265

RESUMEN

OBJECTIVE: The study aimed to develop and validate algorithms for identifying people with type 1 and type 2 diabetes in the All of Us Research Program (AoU) cohort, using electronic health record (EHR) and survey data. RESEARCH DESIGN AND METHODS: Two sets of algorithms were developed, one using only EHR data (EHR), and the other using a combination of EHR and survey data (EHR+). Their performance was evaluated by testing their association with polygenic scores for both type 1 and type 2 diabetes. RESULTS: For type 1 diabetes, the EHR-only algorithm showed a stronger association with T1D polygenic score (p=3×10-5) than the EHR+. For type 2 diabetes, the EHR+ algorithm outperformed both the EHR-only and the existing AoU definition, identifying additional cases (25.79% and 22.57% more, respectively) and showing stronger association with T2D polygenic score (DeLong p=0.03 and 1×10-4, respectively). CONCLUSIONS: We provide new validated definitions of type 1 and type 2 diabetes in AoU, and make them available for researchers. These algorithms, by ensuring consistent diabetes definitions, pave the way for high-quality diabetes research and future clinical discoveries.

10.
medRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546893

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2D) confers a two- to three-fold increased risk of cardiovascular disease (CVD). However, the mechanisms underlying increased CVD risk among people with T2D are only partially understood. We hypothesized that a genetic association study among people with T2D at risk for developing incident cardiovascular complications could provide insights into molecular genetic aspects underlying CVD. METHODS: From 16 studies of the Cohorts for Heart & Aging Research in Genomic Epidemiology (CHARGE) Consortium, we conducted a multi-ancestry time-to-event genome-wide association study (GWAS) for incident CVD among people with T2D using Cox proportional hazards models. Incident CVD was defined based on a composite of coronary artery disease (CAD), stroke, and cardiovascular death that occurred at least one year after the diagnosis of T2D. Cohort-level estimated effect sizes were combined using inverse variance weighted fixed effects meta-analysis. We also tested 204 known CAD variants for association with incident CVD among patients with T2D. RESULTS: A total of 49,230 participants with T2D were included in the analyses (31,118 European ancestries and 18,112 non-European ancestries) which consisted of 8,956 incident CVD cases over a range of mean follow-up duration between 3.2 and 33.7 years (event rate 18.2%). We identified three novel, distinct genetic loci for incident CVD among individuals with T2D that reached the threshold for genome-wide significance (P<5.0×10-8): rs147138607 (intergenic variant between CACNA1E and ZNF648) with a hazard ratio (HR) 1.23, 95% confidence interval (CI) 1.15 - 1.32, P=3.6×10-9, rs11444867 (intergenic variant near HS3ST1) with HR 1.89, 95% CI 1.52 - 2.35, P=9.9×10-9, and rs335407 (intergenic variant between TFB1M and NOX3) HR 1.25, 95% CI 1.16 - 1.35, P=1.5×10-8. Among 204 known CAD loci, 32 were associated with incident CVD in people with T2D with P<0.05, and 5 were significant after Bonferroni correction (P<0.00024, 0.05/204). A polygenic score of these 204 variants was significantly associated with incident CVD with HR 1.14 (95% CI 1.12 - 1.16) per 1 standard deviation increase (P=1.0×10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.

11.
Diabetes Care ; 46(8): 1541-1545, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37353344

RESUMEN

OBJECTIVE: To assess whether increased genetic risk of type 2 diabetes (T2D) is associated with the development of hyperglycemia after glucocorticoid treatment. RESEARCH DESIGN AND METHODS: We performed a retrospective analysis of individuals with no diagnosis of diabetes who received a glucocorticoid dose of ≥10 mg prednisone. We analyzed the association between hyperglycemia and a T2D global extended polygenic score, which was constructed through a meta-analysis of two published genome-wide association studies. RESULTS: Of 546 individuals who received glucocorticoids, 210 developed hyperglycemia and 336 did not. T2D polygenic score was significantly associated with glucocorticoid-induced hyperglycemia (odds ratio 1.4 per SD of polygenic score; P = 0.038). CONCLUSIONS: Individuals with increased genetic risk of T2D have a higher risk of glucocorticoid-induced hyperglycemia. This finding offers a mechanism for risk stratification as part of a precision approach to medical treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Glucocorticoides/efectos adversos , Estudios Retrospectivos , Estudio de Asociación del Genoma Completo , Hiperglucemia/inducido químicamente , Hiperglucemia/genética , Hiperglucemia/diagnóstico , Factores de Riesgo
12.
Diabetologia ; 66(7): 1273-1288, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148359

RESUMEN

AIMS/HYPOTHESIS: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).


Asunto(s)
Diabetes Mellitus Tipo 2 , Salud Poblacional , Humanos , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/genética , Medicina de Precisión , Genotipo , Hispánicos o Latinos/genética , Polimorfismo de Nucleótido Simple/genética
13.
Diabetologia ; 66(7): 1260-1272, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37233759

RESUMEN

AIMS/HYPOTHESIS: Characterisation of genetic variation that influences the response to glucose-lowering medications is instrumental to precision medicine for treatment of type 2 diabetes. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH) examined the acute response to metformin and glipizide in order to identify new pharmacogenetic associations for the response to common glucose-lowering medications in individuals at risk of type 2 diabetes. METHODS: One thousand participants at risk for type 2 diabetes from diverse ancestries underwent sequential glipizide and metformin challenges. A genome-wide association study was performed using the Illumina Multi-Ethnic Genotyping Array. Imputation was performed with the TOPMed reference panel. Multiple linear regression using an additive model tested for association between genetic variants and primary endpoints of drug response. In a more focused analysis, we evaluated the influence of 804 unique type 2 diabetes- and glycaemic trait-associated variants on SUGAR-MGH outcomes and performed colocalisation analyses to identify shared genetic signals. RESULTS: Five genome-wide significant variants were associated with metformin or glipizide response. The strongest association was between an African ancestry-specific variant (minor allele frequency [MAFAfr]=0.0283) at rs149403252 and lower fasting glucose at Visit 2 following metformin (p=1.9×10-9); carriers were found to have a 0.94 mmol/l larger decrease in fasting glucose. rs111770298, another African ancestry-specific variant (MAFAfr=0.0536), was associated with a reduced response to metformin (p=2.4×10-8), where carriers had a 0.29 mmol/l increase in fasting glucose compared with non-carriers, who experienced a 0.15 mmol/l decrease. This finding was validated in the Diabetes Prevention Program, where rs111770298 was associated with a worse glycaemic response to metformin: heterozygous carriers had an increase in HbA1c of 0.08% and non-carriers had an HbA1c increase of 0.01% after 1 year of treatment (p=3.3×10-3). We also identified associations between type 2 diabetes-associated variants and glycaemic response, including the type 2 diabetes-protective C allele of rs703972 near ZMIZ1 and increased levels of active glucagon-like peptide 1 (GLP-1) (p=1.6×10-5), supporting the role of alterations in incretin levels in type 2 diabetes pathophysiology. CONCLUSIONS/INTERPRETATION: We present a well-phenotyped, densely genotyped, multi-ancestry resource to study gene-drug interactions, uncover novel variation associated with response to common glucose-lowering medications and provide insight into mechanisms of action of type 2 diabetes-related variation. DATA AVAILABILITY: The complete summary statistics from this study are available at the Common Metabolic Diseases Knowledge Portal ( https://hugeamp.org ) and the GWAS Catalog ( www.ebi.ac.uk/gwas/ , accession IDs: GCST90269867 to GCST90269899).


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/uso terapéutico , Glipizida/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Glucemia/metabolismo , Glucosa , Variación Genética/genética , Hipoglucemiantes/uso terapéutico
14.
medRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034649

RESUMEN

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

15.
Diabetes Care ; 46(5): 944-952, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787958

RESUMEN

OBJECTIVE: Quantify the impact of genetic and socioeconomic factors on risk of type 2 diabetes (T2D) and obesity. RESEARCH DESIGN AND METHODS: Among participants in the Mass General Brigham Biobank (MGBB) and UK Biobank (UKB), we used logistic regression models to calculate cross-sectional odds of T2D and obesity using 1) polygenic risk scores for T2D and BMI and 2) area-level socioeconomic risk (educational attainment) measures. The primary analysis included 26,737 participants of European genetic ancestry in MGBB with replication in UKB (N = 223,843), as well as in participants of non-European ancestry (MGBB N = 3,468; UKB N = 7,459). RESULTS: The area-level socioeconomic measure most strongly associated with both T2D and obesity was percent without a college degree, and associations with disease prevalence were independent of genetic risk (P < 0.001 for each). Moving from lowest to highest quintiles of combined genetic and socioeconomic burden more than tripled T2D (3.1% to 22.2%) and obesity (20.9% to 69.0%) prevalence. Favorable socioeconomic risk was associated with lower disease prevalence, even in those with highest genetic risk (T2D 13.0% vs. 22.2%, obesity 53.6% vs. 69.0% in lowest vs. highest socioeconomic risk quintiles). Additive effects of genetic and socioeconomic factors accounted for 13.2% and 16.7% of T2D and obesity prevalence, respectively, explained by these models. Findings were replicated in independent European and non-European ancestral populations. CONCLUSIONS: Genetic and socioeconomic factors significantly interact to increase risk of T2D and obesity. Favorable area-level socioeconomic status was associated with an almost 50% lower T2D prevalence in those with high genetic risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Prevalencia , Estudios Transversales , Predisposición Genética a la Enfermedad , Obesidad/epidemiología , Obesidad/genética , Obesidad/complicaciones , Factores de Riesgo , Factores Socioeconómicos
16.
Cardiovasc Diabetol ; 21(1): 136, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864532

RESUMEN

BACKGROUND: The high heterogeneity in the symptoms and severity of COVID-19 makes it challenging to identify high-risk patients early in the disease. Cardiometabolic comorbidities have shown strong associations with COVID-19 severity in epidemiologic studies. Cardiometabolic protein biomarkers, therefore, may provide predictive insight regarding which patients are most susceptible to severe illness from COVID-19. METHODS: In plasma samples collected from 343 patients hospitalized with COVID-19 during the first wave of the pandemic, we measured 92 circulating protein biomarkers previously implicated in cardiometabolic disease. We performed proteomic analysis and developed predictive models for severe outcomes. We then used these models to predict the outcomes of out-of-sample patients hospitalized with COVID-19 later in the surge (N = 194). RESULTS: We identified a set of seven protein biomarkers predictive of admission to the intensive care unit and/or death (ICU/death) within 28 days of presentation to care. Two of the biomarkers, ADAMTS13 and VEGFD, were associated with a lower risk of ICU/death. The remaining biomarkers, ACE2, IL-1RA, IL6, KIM1, and CTSL1, were associated with higher risk. When used to predict the outcomes of the future, out-of-sample patients, the predictive models built with these protein biomarkers outperformed all models built from standard clinical data, including known COVID-19 risk factors. CONCLUSIONS: These findings suggest that proteomic profiling can inform the early clinical impression of a patient's likelihood of developing severe COVID-19 outcomes and, ultimately, accelerate the recognition and treatment of high-risk patients.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Biomarcadores , Enfermedades Cardiovasculares/diagnóstico , Humanos , Proteómica , SARS-CoV-2
17.
Res Sq ; 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35677078

RESUMEN

Background: The high heterogeneity in the symptoms and severity of COVID-19 makes it challenging to identify high-risk patients early in the disease. Cardiometabolic comorbidities have shown strong associations with COVID-19 severity in epidemiologic studies. Cardiometabolic protein biomarkers, therefore, may provide predictive insight regarding which patients are most susceptible to severe illness from COVID-19. Methods: In plasma samples collected from 343 patients hospitalized with COVID-19 during the first wave of the pandemic, we measured 92 circulating protein biomarkers previously implicated in cardiometabolic disease. We performed proteomic analysis and developed predictive models for severe outcomes. We then used these models to predict the outcomes of out-of-sample patients hospitalized with COVID-19 later in the surge (N=194). Results: We identified a set of seven biomarkers predictive of admission to the intensive care unit and/or death (ICU/death) within 28 days of presentation to care. Two of the biomarkers, ADAMTS13 and VEGFD, were associated with a lower risk of ICU/death. The remaining biomarkers, ACE2, IL-1RA, IL6, KIM1, and CTSL1, were associated with higher risk. When used to predict the outcomes of the future, out-of-sample patients, the predictive models built with these biomarkers outperformed all models built from standard clinical data, including known COVID-19 risk factors. Conclusions: These findings suggest that proteomic profiling can inform the early clinical impression of a patient’s likelihood of developing severe COVID-19 outcomes and, ultimately, accelerate the recognition and treatment of high-risk patients.

18.
Diabetes ; 71(3): 554-565, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862199

RESUMEN

Most genome-wide association studies (GWAS) of complex traits are performed using models with additive allelic effects. Hundreds of loci associated with type 2 diabetes have been identified using this approach. Additive models, however, can miss loci with recessive effects, thereby leaving potentially important genes undiscovered. We conducted the largest GWAS meta-analysis using a recessive model for type 2 diabetes. Our discovery sample included 33,139 case subjects and 279,507 control subjects from 7 European-ancestry cohorts, including the UK Biobank. We identified 51 loci associated with type 2 diabetes, including five variants undetected by prior additive analyses. Two of the five variants had minor allele frequency of <5% and were each associated with more than a doubled risk in homozygous carriers. Using two additional cohorts, FinnGen and a Danish cohort, we replicated three of the variants, including one of the low-frequency variants, rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-3.19; P = 1 × 10-16) and a stronger effect in men than in women (for interaction, P = 7 × 10-7). The signal was associated with multiple diabetes-related traits, with homozygous carriers showing a 10% decrease in LDL cholesterol and a 20% increase in triglycerides; colocalization analysis linked this signal to reduced expression of the nearby PELO gene. These results demonstrate that recessive models, when compared with GWAS using the additive approach, can identify novel loci, including large-effect variants with pathophysiological consequences relevant to type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Genes Recesivos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Adulto , LDL-Colesterol/sangre , Europa (Continente)/etnología , Femenino , Frecuencia de los Genes , Homocigoto , Humanos , Masculino , Metaboloma/genética , Persona de Mediana Edad , Mutación , Factores Sexuales , Triglicéridos/sangre
20.
Prehosp Emerg Care ; 23(2): 254-262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30118362

RESUMEN

OBJECTIVE: This study sought to address the disagreement in literature regarding the "golden hour" in trauma by using the Relative Mortality Analysis to overcome previous studies' limitations in accounting for acuity when evaluating the impact of prehospital time on mortality. METHODS: The previous studies that failed to support the "golden hour" suffered from limitations in their efforts to account for the confounding effects of patient acuity on the relationship between prehospital time and mortality in their trauma populations. The Relative Mortality Analysis was designed to directly address these limitations using a novel acuity stratification approach, based on patients' probability of survival (PoS), a comprehensive triage metric calculated using Trauma and Injury Severity Score methodology. For this analysis, the population selection and analysis methods of these previous studies were compared to the Relative Mortality Analysis on how they capture the relationship between prehospital time and mortality in the University of Virginia (UVA) Trauma Center population. RESULTS: The methods of the previous studies that failed to support the "golden hour" also failed to do so when applied to the UVA Trauma Center population. However, when applied to the same population, the Relative Mortality Analysis identified a subgroup, 9.9% (with a PoS 23%-91%), of the 5,063 patient population with significantly lower mortality when transported to the hospital within 1 hour, supporting the "golden hour." CONCLUSION: These results suggest that previous studies failed to support the "golden hour" not due to a lack of patients significantly impacted by prehospital time within their trauma populations, but instead due to limitations in their efforts to account for patient acuity. As a result, these studies inappropriately rejected the "golden hour," leading to the current disagreement in literature regarding the relationship between prehospital time and trauma patient mortality. The Relative Mortality Analysis was shown to overcome the limitations of these studies and demonstrated that the "golden hour" was significant for patients who were not low acuity (PoS >91%) or severely high acuity (PoS <23%).


Asunto(s)
Servicios Médicos de Urgencia , Tiempo de Tratamiento , Heridas y Lesiones/mortalidad , Heridas y Lesiones/terapia , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Estudios Retrospectivos , Factores de Tiempo , Centros Traumatológicos , Triaje , Heridas y Lesiones/diagnóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...