Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39257784

RESUMEN

Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, Flavobacterium johnsoniae forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure. F. johnsoniae forms zorbs whose cells collect other bacterial species and transport them to the zorb core, forming a co-zorb. Live imaging revealed that co-zorbs also form in zebrafish, thereby demonstrating a new type of bacterial movement in vivo. This discovery opens new avenues for understanding community behaviors, the role of biofilms in bulk bacterial transport, and collective strategies for microbial success in various environments.

2.
mBio ; 15(3): e0342823, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38329367

RESUMEN

Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE: Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.


Asunto(s)
Promoción de la Salud , Microbiota , Humanos , Arena , Flavobacterium/genética , Proteínas Bacterianas/metabolismo
3.
J Leukoc Biol ; 116(1): 118-131, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38417030

RESUMEN

Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration, and phagocytosis. In contrast, other effector functions like NETosis and reactive oxygen species production were reduced. PTP1B-deficient neutrophils were more responsive to Aspergillus fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine interleukin-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.


Asunto(s)
Movimiento Celular , Células Madre Pluripotentes Inducidas , Neutrófilos , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Neutrófilos/metabolismo , Neutrófilos/inmunología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Aspergillus fumigatus , Fagocitosis , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Actinas/metabolismo
4.
bioRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106211

RESUMEN

Cell migration is regulated by an interplay between both chemical and mechanical cues. Immune cells navigate through interstitial spaces and generate forces to deform surrounding cells, which in turn exert opposing pressures that regulate cell morphology and motility mechanisms. Current in vitro systems to study confined cell migration largely utilize rigid materials orders of magnitude stiffer than surrounding cells, limiting insights into how these local physical interactions regulate interstitial cell motility. Here, we first characterize mechanical interactions between neutrophils and surrounding cells in larval zebrafish and subsequently engineer in vitro migration channels bound by a deformable liquid-liquid interface that responds to cell generated pressures yielding a gradient of confinement across the length of a single cell. Tuning confining pressure gradients replicates mechanical interactions with surrounding cells during interstitial migration in vivo . We find that neutrophils favor a bleb-based mechanism of force generation to deform a barrier applying cell-scale confining forces. This work introduces a biomimetic material interface that enables new avenues of exploring the influence of mechanical forces on cell migration.

5.
Proc Natl Acad Sci U S A ; 120(20): e2301137120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155881

RESUMEN

Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Nonmammalian jawed vertebrates lack lymph nodes but maintain diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing nonhematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen-presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ. This lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system.


Asunto(s)
Linfocitos T , Pez Cebra , Animales , Ganglios Linfáticos , Células Presentadoras de Antígenos , Antígenos , Movimiento Celular , Mamíferos , Proteínas de Pez Cebra , Receptores CCR7
6.
Trends Immunol ; 44(5): 324-325, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37029072

RESUMEN

How neutrophils make decisions about polarity and migration path in complex tissue environments in situ remains unclear. Hadjitheodorou et al. describe how an internal mechanical regulator might help cells resolve the dilemma of two competing cell fronts.


Asunto(s)
Neutrófilos , Humanos , Polaridad Celular , Movimiento Celular
7.
Adv Sci (Weinh) ; 9(10): e2104510, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35118834

RESUMEN

Oxygen levels in vivo are autonomously regulated by a supply-demand balance, which can be altered in disease states. However, the oxygen levels of in vitro cell culture systems, particularly microscale cell culture, are typically dominated by either supply or demand. Further, the oxygen microenvironment in these systems is rarely monitored or reported. Here, a method to establish and dynamically monitor autonomously regulated oxygen microenvironments (AROM) using an oil overlay in an open microscale cell culture system is presented. Using this method, the oxygen microenvironment is dynamically regulated via the supply-demand balance of the system. Numerical simulation and experimental validation of oxygen transport within multi-liquid-phase, microscale culture systems involving a variety of cell types, including mammalian, fungal, and bacterial cells are presented. Finally, AROM is applied to establish a coculture between cells with disparate oxygen demands-primary intestinal epithelial cells (oxygen consuming) and Bacteroides uniformis (an anaerobic species prevalent in the human gut).


Asunto(s)
Técnicas de Cultivo de Célula , Oxígeno , Animales , Técnicas de Cocultivo , Células Epiteliales/metabolismo , Humanos , Mamíferos/metabolismo
8.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34914633

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Experimentales , Neoplasias Pancreáticas/genética , ARN Interferente Pequeño/genética , Microambiente Tumoral/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Movimiento Celular , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/biosíntesis , Humanos , Ratones , Ratones Transgénicos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia
9.
medRxiv ; 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32587989

RESUMEN

Public health agencies have recommended that the public wear face coverings, including face masks, to mitigate COVID-19 transmission. However, the extent to which the public has adopted this recommendation is unknown. An observational study of 3,271 members of the public in May and June 2020 examined face covering use at grocery stores across Wisconsin. We found that only 41.2% used face coverings. Individuals who appeared to be female or older adults had higher odds of using face coverings. Additionally, location-specific variables such as expensiveness of store, county-level population and county-level COVID-19 case prevalence were associated with increased odds of using face coverings. To our knowledge, this is the first direct observational study examining face covering behavior by the public in the U.S., and our findings have implications for public health agencies during the COVID-19 pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA