Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38417030

RESUMEN

Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration and phagocytosis. In contrast, other effector functions like NETosis and ROS production were reduced. PTP1B-deficient neutrophils were more responsive to A. fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine IL-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.

2.
mBio ; 15(3): e0342823, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38329367

RESUMEN

Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE: Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.


Asunto(s)
Promoción de la Salud , Microbiota , Humanos , Arena , Flavobacterium/genética , Proteínas Bacterianas/metabolismo
3.
bioRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106211

RESUMEN

Cell migration is regulated by an interplay between both chemical and mechanical cues. Immune cells navigate through interstitial spaces and generate forces to deform surrounding cells, which in turn exert opposing pressures that regulate cell morphology and motility mechanisms. Current in vitro systems to study confined cell migration largely utilize rigid materials orders of magnitude stiffer than surrounding cells, limiting insights into how these local physical interactions regulate interstitial cell motility. Here, we first characterize mechanical interactions between neutrophils and surrounding cells in larval zebrafish and subsequently engineer in vitro migration channels bound by a deformable liquid-liquid interface that responds to cell generated pressures yielding a gradient of confinement across the length of a single cell. Tuning confining pressure gradients replicates mechanical interactions with surrounding cells during interstitial migration in vivo . We find that neutrophils favor a bleb-based mechanism of force generation to deform a barrier applying cell-scale confining forces. This work introduces a biomimetic material interface that enables new avenues of exploring the influence of mechanical forces on cell migration.

4.
Trends Immunol ; 44(5): 324-325, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37029072

RESUMEN

How neutrophils make decisions about polarity and migration path in complex tissue environments in situ remains unclear. Hadjitheodorou et al. describe how an internal mechanical regulator might help cells resolve the dilemma of two competing cell fronts.


Asunto(s)
Neutrófilos , Humanos , Polaridad Celular , Movimiento Celular
5.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34914633

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Experimentales , Neoplasias Pancreáticas/genética , ARN Interferente Pequeño/genética , Microambiente Tumoral/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Movimiento Celular , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/biosíntesis , Humanos , Ratones , Ratones Transgénicos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia
6.
medRxiv ; 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32587989

RESUMEN

Public health agencies have recommended that the public wear face coverings, including face masks, to mitigate COVID-19 transmission. However, the extent to which the public has adopted this recommendation is unknown. An observational study of 3,271 members of the public in May and June 2020 examined face covering use at grocery stores across Wisconsin. We found that only 41.2% used face coverings. Individuals who appeared to be female or older adults had higher odds of using face coverings. Additionally, location-specific variables such as expensiveness of store, county-level population and county-level COVID-19 case prevalence were associated with increased odds of using face coverings. To our knowledge, this is the first direct observational study examining face covering behavior by the public in the U.S., and our findings have implications for public health agencies during the COVID-19 pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...