Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582763

RESUMEN

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Asunto(s)
Bacteriófagos , Enterococos Resistentes a la Vancomicina , Humanos , Animales , Ratones , Bacteriófagos/fisiología , Vancomicina/farmacología , Modelos Animales de Enfermedad , Myoviridae/fisiología , Antibacterianos/farmacología
2.
mBio ; 13(4): e0118322, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35856563

RESUMEN

The severity of Clostridioides difficile infections (CDI) has increased over the last few decades. Patient age, white blood cell count, and creatinine levels as well as C. difficile ribotype and toxin genes have been associated with disease severity. However, it is unclear whether specific members of the gut microbiota are associated with variations in disease severity. The gut microbiota is known to interact with C. difficile during infection. Perturbations to the gut microbiota are necessary for C. difficile to colonize the gut. The gut microbiota can inhibit C. difficile colonization through bile acid metabolism, nutrient consumption, and bacteriocin production. Here, we sought to demonstrate that members of the gut bacterial communities can also contribute to disease severity. We derived diverse gut communities by colonizing germfree mice with different human fecal communities. The mice were then infected with a single C. difficile ribotype 027 clinical isolate, which resulted in moribundity and histopathologic differences. The variation in severity was associated with the human fecal community that the mice received. Generally, bacterial populations with pathogenic potential, such as Enterococcus, Helicobacter, and Klebsiella, were associated with more-severe outcomes. Bacterial groups associated with fiber degradation and bile acid metabolism, such as Anaerotignum, Blautia, Lactonifactor, and Monoglobus, were associated with less-severe outcomes. These data indicate that, in addition to the host and C. difficile subtype, populations of gut bacteria can influence CDI disease severity. IMPORTANCE Clostridioides difficile colonization can be asymptomatic or develop into an infection ranging in severity from mild diarrhea to toxic megacolon, sepsis, and death. Models that predict severity and guide treatment decisions are based on clinical factors and C. difficile characteristics. Although the gut microbiome plays a role in protecting against CDI, its effect on CDI disease severity is unclear and has not been incorporated into disease severity models. We demonstrated that variation in the microbiome of mice colonized with human feces yielded a range of disease outcomes. These results revealed groups of bacteria associated with both severe and mild C. difficile infection outcomes. Gut bacterial community data from patients with CDI could improve our ability to identify patients at risk of developing more severe disease and improve interventions that target C. difficile and the gut bacteria to reduce host damage.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Animales , Bacterias/genética , Ácidos y Sales Biliares , Infecciones por Clostridium/microbiología , Heces/microbiología , Humanos , Ratones
3.
mSphere ; 6(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952668

RESUMEN

The gut bacterial community prevents many pathogens from colonizing the intestine. Previous studies have associated specific bacteria with clearing Clostridioides difficile colonization across different community perturbations. However, those bacteria alone have been unable to clear C. difficile colonization. To elucidate the changes necessary to clear colonization, we compared differences in bacterial abundance between communities able and unable to clear C. difficile colonization. We treated mice with titrated doses of antibiotics prior to C. difficile challenge, resulting in no colonization, colonization and clearance, or persistent colonization. Previously, we observed that clindamycin-treated mice were susceptible to colonization but spontaneously cleared C. difficile Therefore, we investigated whether other antibiotics would show the same result. We found that reduced doses of cefoperazone and streptomycin permitted colonization and clearance of C. difficile Mice that cleared colonization had antibiotic-specific community changes and predicted interactions with C. difficile Clindamycin treatment led to a bloom in populations related to Enterobacteriaceae Clearance of C. difficile was concurrent with the reduction of those blooming populations and the restoration of community members related to the Porphyromonadaceae and Bacteroides Cefoperazone created a susceptible community characterized by drastic reductions in the community diversity and interactions and a sustained increase in the abundance of many facultative anaerobes. Lastly, clearance in streptomycin-treated mice was associated with the recovery of multiple members of the Porphyromonadaceae, with little overlap in the specific Porphyromonadaceae observed in the clindamycin treatment. Further elucidation of how C. difficile colonization is cleared from different gut bacterial communities will improve C. difficile infection treatments.IMPORTANCE The community of microorganisms, or microbiota, in our intestines prevents pathogens like C. difficile from colonizing and causing infection. However, antibiotics can disturb the gut microbiota, which allows C. difficile to colonize. C. difficile infections (CDI) are primarily treated with antibiotics, which frequently leads to recurrent infections because the microbiota has not yet returned to a resistant state. The recurrent infection cycle often ends when the fecal microbiota from a presumed resistant person is transplanted into the susceptible person. Although this treatment is highly effective, we do not understand the mechanism. We hope to improve the treatment of CDI through elucidating how the bacterial community eliminates CDI. We found that C. difficile colonized susceptible mice but was spontaneously eliminated in an antibiotic treatment-specific manner. These data indicate that each community had different requirements for clearing colonization. Understanding how different communities clear colonization will reveal targets to improve CDI treatments.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/metabolismo , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/fisiología , Infecciones por Clostridium/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/clasificación , Bacterias/efectos de los fármacos , Cefoperazona/uso terapéutico , Clindamicina/uso terapéutico , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/prevención & control , Susceptibilidad a Enfermedades , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Ratones , Estreptomicina/uso terapéutico
4.
PLoS One ; 14(9): e0223025, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31560732

RESUMEN

Clostridium difficile (Cd) infection (CDI) typically occurs after antibiotic usage perturbs the gut microbiota. Mucosa-associated invariant T cells (MAIT) are found in the gut and their development is dependent on Major histocompatibility complex-related protein 1 (MR1) and the host microbiome. Here we were interested in determining whether the absence of MR1 impacts resistance to CDI. To this end, wild-type (WT) and MR1-/- mice were treated with antibiotics and then infected with Cd spores. Surprisingly, MR1-/- mice exhibited resistance to Cd colonization. 16S rRNA gene sequencing of feces revealed inherent differences in microbial composition. This colonization resistance was transferred from MR1-/- to WT mice via fecal microbiota transplantation, suggesting that MR1-dependent factors influence the microbiota, leading to CDI susceptibility.


Asunto(s)
Infecciones por Clostridium/inmunología , Resistencia a la Enfermedad/genética , Microbioma Gastrointestinal/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Menor/genética , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Cefoperazona/administración & dosificación , Cefoperazona/efectos adversos , Infecciones por Clostridium/etiología , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Modelos Animales de Enfermedad , Resistencia a la Enfermedad/inmunología , Trasplante de Microbiota Fecal , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Organismos Libres de Patógenos Específicos
5.
Infect Immun ; 87(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30936157

RESUMEN

Enterococcus faecalis is a human intestinal pathobiont with intrinsic and acquired resistance to many antibiotics, including vancomycin. Nature provides a diverse and virtually untapped repertoire of bacterial viruses, or bacteriophages (phages), that could be harnessed to combat multidrug-resistant enterococcal infections. Bacterial phage resistance represents a potential barrier to the implementation of phage therapy, emphasizing the importance of investigating the molecular mechanisms underlying the emergence of phage resistance. Using a cohort of 19 environmental lytic phages with tropism against E. faecalis, we found that these phages require the enterococcal polysaccharide antigen (Epa) for productive infection. Epa is a surface-exposed heteroglycan synthesized by enzymes encoded by both conserved and strain-specific genes. We discovered that exposure to phage selective pressure favors mutation in nonconserved epa genes both in culture and in a mouse model of intestinal colonization. Despite gaining phage resistance, epa mutant strains exhibited a loss of resistance to cell wall-targeting antibiotics. Finally, we show that an E. faecalisepa mutant strain is deficient in intestinal colonization, cannot expand its population upon antibiotic-driven intestinal dysbiosis, and fails to be efficiently transmitted to juvenile mice following birth. This study demonstrates that phage therapy could be used in combination with antibiotics to target enterococci within a dysbiotic microbiota. Enterococci that evade phage therapy by developing resistance may be less fit at colonizing the intestine and sensitized to vancomycin, preventing their overgrowth during antibiotic treatment.


Asunto(s)
Antibacterianos/farmacología , Bacteriófagos/fisiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/virología , Enterococcus faecium/virología , Infecciones por Bacterias Grampositivas/terapia , Intestinos/microbiología , Animales , Terapia Biológica , Enterococcus faecalis/inmunología , Enterococcus faecalis/fisiología , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/inmunología , Enterococcus faecium/fisiología , Femenino , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología
6.
mSphere ; 3(5)2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185513

RESUMEN

Clostridium difficile is a Gram-positive obligate anaerobe that forms spores in order to survive for long periods in the unfavorable environment outside a host. C. difficile is the leading cause of nosocomial infectious diarrhea worldwide. C. difficile infection (CDI) arises after a patient treated with broad-spectrum antibiotics ingests infectious spores. The first step in C. difficile pathogenesis is the metabolic reactivation of dormant spores within the gastrointestinal (GI) tract through a process known as germination. In this work, we aim to elucidate the specific conditions and the location within the GI tract that facilitate this process. Our data suggest that C. difficile germination occurs through a two-step biochemical process that is regulated by pH and bile salts, amino acids, and calcium present within the GI tract. Maximal germination occurs at a pH ranging from 6.5 to 8.5 in the terminal small intestine prior to bile salt and calcium reabsorption by the host. Germination can be initiated by lower concentrations of germinants when spores are incubated with a combination of bile salts, calcium, and amino acids, and this synergy is dependent on the availability of calcium. The synergy described here allows germination to proceed in the presence of inhibitory bile salts and at physiological concentrations of germinants, effectively decreasing the concentrations of nutrients required to initiate an essential step of pathogenesis.IMPORTANCEClostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Calcio/metabolismo , Clostridioides difficile/fisiología , Intestino Delgado/microbiología , Esporas Bacterianas/fisiología , Aminoácidos/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Señalización del Calcio , Concentración de Iones de Hidrógeno , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Sci Rep ; 8(1): 8350, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844443

RESUMEN

Viruses rely upon their hosts for biosynthesis of viral RNA, DNA and protein. This dependency frequently engenders strong selection for virus genome compatibility with potential hosts, appropriate gene regulation and expression necessary for a successful infection. While bioinformatic studies have shown strong correlations between codon usage in viral and host genomes, the selective factors by which this compatibility evolves remain a matter of conjecture. Engineered to include codons with a lesser usage and/or tRNA abundance within the host, three different attenuated strains of the bacterial virus ФX174 were created and propagated via serial transfers. Molecular sequence data indicate that biosynthetic compatibility was recovered rapidly. Extensive computational simulations were performed to assess the role of mutational biases as well as selection for translational efficiency in the engineered phage. Using bacteriophage as a model system, we can begin to unravel the evolutionary processes shaping codon compatibility between viruses and their host.


Asunto(s)
Bacteriófago phi X 174/genética , Genoma Viral/genética , Bacteriófago phi X 174/metabolismo , Bacteriófagos/genética , Codón/genética , Biología Computacional/métodos , Evolución Molecular , ARN de Transferencia/genética , ARN Viral/genética , Virus/genética
8.
PLoS Pathog ; 13(7): e1006443, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704538

RESUMEN

Clostridium difficile (C. difficile) is an anaerobic gram-positive pathogen that is the leading cause of nosocomial bacterial infection globally. C. difficile infection (CDI) typically occurs after ingestion of infectious spores by a patient that has been treated with broad-spectrum antibiotics. While CDI is a toxin-mediated disease, transmission and pathogenesis are dependent on the ability to produce viable spores. These spores must become metabolically active (germinate) in order to cause disease. C. difficile spore germination occurs when spores encounter bile salts and other co-germinants within the small intestine, however, the germination signaling cascade is unclear. Here we describe a signaling role for Ca2+ during C. difficile spore germination and provide direct evidence that intestinal Ca2+ coordinates with bile salts to stimulate germination. Endogenous Ca2+ (released from within the spore) and a putative AAA+ ATPase, encoded by Cd630_32980, are both essential for taurocholate-glycine induced germination in the absence of exogenous Ca2+. However, environmental Ca2+ replaces glycine as a co-germinant and circumvents the need for endogenous Ca2+ fluxes. Cd630_32980 is dispensable for colonization in a murine model of C. difficile infection and ex vivo germination in mouse ileal contents. Calcium-depletion of the ileal contents prevented mutant spore germination and reduced WT spore germination by 90%, indicating that Ca2+ present within the gastrointestinal tract plays a critical role in C. difficile germination, colonization, and pathogenesis. These data provide a biological mechanism that may explain why individuals with inefficient intestinal calcium absorption (e.g., vitamin D deficiency, proton pump inhibitor use) are more prone to CDI and suggest that modulating free intestinal calcium is a potential strategy to curb the incidence of CDI.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Calcio/metabolismo , Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Intestino Delgado/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Animales , Proteínas Bacterianas/metabolismo , Señalización del Calcio , Clostridioides difficile/genética , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/metabolismo , Humanos , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
9.
mBio ; 6(4): e00974, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26173701

RESUMEN

UNLABELLED: Perturbations to the gut microbiota can result in a loss of colonization resistance against gastrointestinal pathogens such as Clostridium difficile. Although C. difficile infection is commonly associated with antibiotic use, the precise alterations to the microbiota associated with this loss in function are unknown. We used a variety of antibiotic perturbations to generate a diverse array of gut microbiota structures, which were then challenged with C. difficile spores. Across these treatments we observed that C. difficile resistance was never attributable to a single organism, but rather it was the result of multiple microbiota members interacting in a context-dependent manner. Using relative abundance data, we built a machine learning regression model to predict the levels of C. difficile that were found 24 h after challenging the perturbed communities. This model was able to explain 77.2% of the variation in the observed number of C. difficile per gram of feces. This model revealed important bacterial populations within the microbiota, which correlation analysis alone did not detect. Specifically, we observed that populations associated with the Porphyromonadaceae, Lachnospiraceae, Lactobacillus, and Alistipes were protective and populations associated with Escherichia and Streptococcus were associated with high levels of colonization. In addition, a population affiliated with the Akkermansia indicated a strong context dependency on other members of the microbiota. Together, these results indicate that individual bacterial populations do not drive colonization resistance to C. difficile. Rather, multiple diverse assemblages act in concert to mediate colonization resistance. IMPORTANCE: The gastrointestinal tract harbors a complex community of bacteria, known as the microbiota, which plays an integral role preventing its colonization by gut pathogens. This resistance has been shown to be crucial for protection against Clostridium difficile infections (CDI), which are the leading source of hospital-acquired infections in the United States. Antibiotics are a major risk factor for acquiring CDI due to their effect on the normal structure of the indigenous gut microbiota. We found that diverse antibiotic perturbations gave rise to altered communities that varied in their susceptibility to C. difficile colonization. We found that multiple coexisting populations, not one specific population of bacteria, conferred resistance. By understanding the relationships between C. difficile and members of the microbiota, it will be possible to better manage this important infection.


Asunto(s)
Antibacterianos/administración & dosificación , Clostridioides difficile/crecimiento & desarrollo , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Carga Bacteriana , Clostridioides difficile/aislamiento & purificación , Simulación por Computador , Ratones , Aprendizaje Automático Supervisado
10.
Appl Environ Microbiol ; 81(1): 396-404, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362056

RESUMEN

Using populations of two sympatric Peromyscus species, we characterized the importance of the host species, physiology, environment, diet, and other factors in shaping the structure and dynamics of their gut microbiota. We performed a capture-mark-release experiment in which we obtained 16S rRNA gene sequence data from 49 animals at multiple time points. In addition, we performed 18S rRNA gene sequencing of the same samples to characterize the diet of each individual. Our analysis could not distinguish between the two species of Peromyscus on the basis of the structures of their microbiotas. However, we did observe a set of bacterial populations that were found in every animal. Most notable were abundant representatives of the genera Lactobacillus and Helicobacter. When we combined the 16S and 18S rRNA gene sequence analyses, we were unable to distinguish the communities on the basis of the animal's diet. Furthermore, there were no discernible differences in the structure of the gut communities based on the capture site or their developmental or physiological status. Finally, in contrast to humans, where each individual has a unique microbiota when sampled over years, among the animals captured in this study, the uniqueness of each microbiota was lost within a week of the original sampling. Wild populations provide an opportunity to study host-microbiota interactions as they originally evolved, and the ability to perform natural experiments will facilitate a greater understanding of the factors that shape the structure and function of the gut microbiota.


Asunto(s)
Microbiota , Peromyscus/microbiología , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Helicobacter/clasificación , Helicobacter/genética , Lactobacillus/clasificación , Lactobacillus/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
11.
Anaerobe ; 32: 34-36, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25481351

RESUMEN

Clostridium septicum is an uncommon cause of severe infection. Real-time PCR against the C. septicum-specific alpha-toxin gene (csa) was used to estimate the prevalence of this microbe in human stool from 161 asymptomatic community-dwelling adults and 192 hospitalized patients with diarrhea. All samples were negative, suggesting a low prevalence.


Asunto(s)
Portador Sano , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Clostridium septicum/genética , Heces/microbiología , Adulto , Infecciones por Clostridium/diagnóstico , Clostridium septicum/clasificación , ADN Bacteriano , Gangrena Gaseosa/epidemiología , Gangrena Gaseosa/microbiología , Genes Bacterianos , Humanos , Reacción en Cadena de la Polimerasa , Prevalencia
12.
mBio ; 5(3): e01021-14, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24803517

RESUMEN

Antibiotic usage is the most commonly cited risk factor for hospital-acquired Clostridium difficile infections (CDI). The increased risk is due to disruption of the indigenous microbiome and a subsequent decrease in colonization resistance by the perturbed bacterial community; however, the specific changes in the microbiome that lead to increased risk are poorly understood. We developed statistical models that incorporated microbiome data with clinical and demographic data to better understand why individuals develop CDI. The 16S rRNA genes were sequenced from the feces of 338 individuals, including cases, diarrheal controls, and nondiarrheal controls. We modeled CDI and diarrheal status using multiple clinical variables, including age, antibiotic use, antacid use, and other known risk factors using logit regression. This base model was compared to models that incorporated microbiome data, using diversity metrics, community types, or specific bacterial populations, to identify characteristics of the microbiome associated with CDI susceptibility or resistance. The addition of microbiome data significantly improved our ability to distinguish CDI status when comparing cases or diarrheal controls to nondiarrheal controls. However, only when we assigned samples to community types was it possible to differentiate cases from diarrheal controls. Several bacterial species within the Ruminococcaceae, Lachnospiraceae, Bacteroides, and Porphyromonadaceae were largely absent in cases and highly associated with nondiarrheal controls. The improved discriminatory ability of our microbiome-based models confirms the theory that factors affecting the microbiome influence CDI. IMPORTANCE The gut microbiome, composed of the trillions of bacteria residing in the gastrointestinal tract, is responsible for a number of critical functions within the host. These include digestion, immune system stimulation, and colonization resistance. The microbiome's role in colonization resistance, which is the ability to prevent and limit pathogen colonization and growth, is key for protection against Clostridium difficile infections. However, the bacteria that are important for colonization resistance have not yet been elucidated. Using statistical modeling techniques and different representations of the microbiome, we demonstrated that several community types and the loss of several bacterial populations, including Bacteroides, Lachnospiraceae, and Ruminococcaceae, are associated with CDI. Our results emphasize the importance of considering the microbiome in mediating colonization resistance and may also direct the design of future multispecies probiotic therapies.


Asunto(s)
Infecciones Bacterianas/microbiología , Clostridioides difficile/genética , Diarrea/microbiología , Microbiota/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/tratamiento farmacológico , Biodiversidad , Análisis por Conglomerados , Diagnóstico Diferencial , Diarrea/diagnóstico , Diarrea/tratamiento farmacológico , Heces/microbiología , Femenino , Humanos , Masculino , Metagenoma , Persona de Mediana Edad , ARN Bacteriano , ARN Ribosómico 16S/genética , Adulto Joven
13.
PLoS Comput Biol ; 8(6): e1002358, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719234

RESUMEN

Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies.


Asunto(s)
Metagenoma , Biología Computacional , Sistema Digestivo/metabolismo , Sistema Digestivo/microbiología , Femenino , Genética Microbiana , Glicosaminoglicanos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Metaboloma/genética , Familia de Multigenes , Vagina/metabolismo , Vagina/microbiología
14.
Gut Microbes ; 3(4): 383-93, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22688727

RESUMEN

Ecologists hypothesize that community structure and stability affect productivity, sensitivity to invasion and extinction, and resilience and resistance to perturbations. Viewed in the context of the gut microbiome, the stability of the gut community is important for understanding the effects of antibiotics, diet change and other perturbations on host health and colonization resistance. Here we describe the dynamics of a self-contained community, the murine gut microbiome. Using 16S rRNA gene sequencing of fecal samples collected daily from individual mice, we characterized the community membership and structure to determine whether there were significant changes in the gut community during the first year of life. Based on analysis of molecular variance, we observed two community states. The first was observed in the 10 days following weaning and the second was observed by 15 days following weaning. Interestingly, these two states had the same bacterial populations, but those populations had different relative abundances in the two states. By calculating the root mean squared distances between samples collected in the early and late states for each mouse, we observed that the late state was more stable than the early state. This increase in stability was not correlated with increased taxonomic richness, taxonomic diversity, or phylogenetic diversity. In the absence of an experimentally induced perturbation, the second community state was relatively constant through 364 days post weaning. These results suggest a high degree of stability in the microbiome once the community reached the second state.


Asunto(s)
Biota , Tracto Gastrointestinal/microbiología , Metagenoma , Destete , Animales , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
BMC Evol Biol ; 10: 75, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20226044

RESUMEN

BACKGROUND: When introduced to novel environments, the ability for a species to survive and rapidly proliferate corresponds with its adaptive potential. Of the many factors that can yield an environment inhospitable to foreign species, phenotypic response to variation in the thermal climate has been observed within a wide variety of species. Experimental evolution studies using bacteriophage model systems have been able to elucidate mutations, which may correspond with the ability of phage to survive modest increases/decreases in the temperature of their environment. RESULTS: Phage PhiX174 was subjected to both elevated (50 degrees C) and extreme (70 degrees C+) temperatures for anywhere from a few hours to days. While no decline in the phage's fitness was detected when it was exposed to 50 degrees C for a few hours, more extreme temperatures significantly impaired the phage; isolates that survived these heat treatments included the acquisition of several mutations within structural genes. As was expected, long-term treatment of elevated and extreme temperatures, ranging from 50-75 degrees C, reduced the survival rate even more. Isolates which survived the initial treatment at 70 degrees C for 24 or 48 hours exhibited a significantly greater tolerance to subsequent heat treatments. CONCLUSIONS: Using the model organism PhiX174, we have been able to study adaptive evolution on the molecular level under extreme thermal changes in the environment, which to-date had yet to be thoroughly examined. Under both acute and extended thermal selection, we were able to observe mutations that occurred in response to excessive external pressures independent of concurrently evolving hosts. Even though its host cannot tolerate extreme temperatures such as the ones tested here, this study confirms that PhiX174 is capable of survival.


Asunto(s)
Adaptación Fisiológica/genética , Bacteriófagos/genética , Evolución Biológica , Calor , ADN Viral/genética , Análisis de Secuencia de ADN
16.
Infect Genet Evol ; 10(1): 129-36, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19914402

RESUMEN

The adaption of pathogens to their host(s) is a major factor in the emergence of infectious disease and the persistent survival of many of the infectious diseases within the population. Since many of the smaller viral pathogens are entirely dependent upon host machinery, it has been postulated that they are under selection for a composition similar to that of their host. Analyses of sequence composition have been conducted for numerous small viral species including the Flavivirus genus. Examination of the species within this particular genus that infect vertebrate hosts revealed that sequence composition proclivities do not correspond with vector transmission as the evolutionary history of this species suggests. Recent sequencing efforts have generated complete genomes for many viral species including members of the Flavivirus genus. A thorough comparison of the sequence composition was conducted for all of the available Flaviviruses for which the complete genome is publicly available. This effort expands the work of previous studies to include new vector-borne species as well as members of the insect-specific group which previously have not been explored. Metrics, including mono-, di-, and tri-nucleotide abundances as well as N(C) values and codon usage preferences, were explored both for the entire polyprotein sequence as well as for each individual coding region. Preferences for compositions correspond to host-range rather than evolutionary history; species which infect vertebrate hosts exhibited particular preferences similar to each other as well as in correspondence with their host's preferences. Flaviviruses which do not infect vertebrate hosts, however, did not show these proclivities, with the exception of the Kamiti River virus suggesting its recent (either past or present) infectivity of an unknown vertebrate host.


Asunto(s)
Composición de Base , Secuencia de Bases , Codón , Evolución Molecular , Flaviviridae/genética , Animales , Flaviviridae/clasificación , Genoma Viral , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...