Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 26: 101071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736612

RESUMEN

Although 2D cancer models have been the standard for drug development, they don't resemble in vivo properties adequately. 3D models can potentially overcome this. Bioprinting is a promising technique for more refined models to investigate central processes in tumor development such as proliferation, dormancy or metastasis. We aimed to analyze bioinks, which could mimic these different tumor stages in a cast vascularized arteriovenous loop melanoma model in vivo. It has the advantage to be a closed system with a defined microenvironment, supplied only with one vessel-ideal for metastasis research. Tested bioinks showed significant differences in composition, printability, stiffness and microscopic pore structure, which led to different tumor stages (Matrigel and Alg/HA/Gel for progression, Cellink Bioink for dormancy) and resulted in different primary tumor growth (Matrigel significantly higher than Cellink Bioink). Light-sheet fluorescence microscopy revealed differences in vascularization and hemorrhages with no additional vessels found in Cellink Bioink. Histologically, typical human melanoma with different stages was demonstrated. HMB-45-positive tumors in progression inks were infiltrated by macrophages (CD163), highly proliferative (Ki67) and metastatic (MITF/BRN2, ATX, MMP3). Stainings of lymph nodes revealed metastases even without significant primary tumor growth in Cellink Bioink. This model can be used to study tumor pathology and metastasis of different tumor stages and therapies.

2.
Adv Mater ; : e2403642, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653478

RESUMEN

Myocardial infarction (MI) causes cell death, disrupts electrical activity, triggers arrhythmia, and results in heart failure, whereby 50-60% of MI-associated deaths manifest as sudden cardiac deaths (SCD). The most effective therapy for SCD prevention is implantable cardioverter defibrillators (ICDs). However, ICDs contribute to adverse remodeling and disease progression and do not prevent arrhythmia. This work develops an injectable collagen-PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) hydrogel that protects infarcted hearts against ventricular tachycardia (VT) and can be combined with human induced pluripotent stem cell (hiPSC)-cardiomyocytes to promote partial cardiac remuscularization. PEDOT:PSS improves collagen gel formation, micromorphology, and conductivity. hiPSC-cardiomyocytes in collagen-PEDOT:PSS hydrogels exhibit near-adult sarcomeric length, improved contractility, enhanced calcium handling, and conduction velocity. RNA-sequencing data indicate enhanced maturation and improved cell-matrix interactions. Injecting collagen-PEDOT:PSS hydrogels in infarcted mouse hearts decreases VT to the levels of healthy hearts. Collectively, collagen-PEDOT:PSS hydrogels offer a versatile platform for treating cardiac injuries.

3.
Biomacromolecules ; 25(4): 2323-2337, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38437165

RESUMEN

Genipin-cross-linked silk fibroin (SF) hydrogel is considered to be biocompatible and mechanically robust. However, its use remains a challenge for in situ forming applications due to its prolonged gelation process. In our attempt to facilitate the in situ fabrication of a genipin-mediated SF hydrogel, alginate dialdehyde (ADA) was utilized as a reinforcement template. Here, SF/ADA-based hydrogels with different compositions were synthesized covalently and ionically. Incorporating ADA into the SF hydrogel increased pore size (44.66-174.66 µm), porosity (61.59-80.40%), and the equilibrium swelling degree (7.60-30.17). Moreover, a wide range of storage modulus and compressive modulus were obtained by adjusting the proportions of SF and ADA networks within the hydrogel. The in vitro cell analysis using preosteoblast cells (MC3T3-E1) demonstrated the cytocompatibility of all hydrogels. Overall, the covalently and ionically cross-linked SF/ADA hydrogel represents a promising solution for in situ forming hydrogels for applications in tissue regeneration.


Asunto(s)
Fibroínas , Hidrogeles , Alginatos , Iridoides , Seda , Ingeniería de Tejidos
4.
Tissue Eng Part A ; 30(5-6): 244-256, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063005

RESUMEN

In skeletal muscle tissue engineering, innervation and vascularization play an essential role in the establishment of functional skeletal muscle. For adequate three-dimensional assembly, biocompatible aligned nanofibers are beneficial as matrices for cell seeding. The aim of this study was to analyze the impact of Schwann cells (SC) on myoblast (Mb) and adipogenic mesenchymal stromal cell (ADSC) cocultures on poly-ɛ-caprolactone (PCL)-collagen I-nanofibers in vivo. Human Mb/ADSC cocultures, as well as Mb/ADSC/SC cocultures, were seeded onto PCL-collagen I-nanofiber scaffolds and implanted into the innervated arteriovenous loop model (EPI loop model) of immunodeficient rats for 4 weeks. Histological staining and gene expression were used to compare their capacity for vascularization, immunological response, myogenic differentiation, and innervation. After 4 weeks, both Mb/ADSC and Mb/ADSC/SC coculture systems showed similar amounts and distribution of vascularization, as well as immunological activity. Myogenic differentiation could be observed in both groups through histological staining (desmin, myosin heavy chain) and gene expression (MYOD, MYH3, ACTA1) without significant difference between groups. Expression of CHRNB and LAMB2 also implied neuromuscular junction formation. Our study suggests that the addition of SC did not significantly impact myogenesis and innervation in this model. The implanted motor nerve branch may have played a more significant role than the presence of SC.


Asunto(s)
Nanofibras , Andamios del Tejido , Ratas , Humanos , Animales , Ingeniería de Tejidos/métodos , Diferenciación Celular , Músculo Esquelético , Colágeno Tipo I/metabolismo , Desarrollo de Músculos/genética
5.
Eur J Neurosci ; 59(2): 308-315, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086536

RESUMEN

Multiple system atrophy (MSA) is a rare and rapidly progressive atypical parkinsonian disorder characterized by oligodendroglial cytoplasmic inclusions containing α-synuclein (α-syn), demyelination, inflammation and neuronal loss. To date, no disease-modifying therapy is available. Targeting α-syn-driven oligodendroglial dysfunction and demyelination presents a potential therapeutic approach for restricting axonal dysfunction, neuronal loss and disease progression. The present study investigated the promyelinogenic potential of sobetirome, a blood-brain barrier permeable and central nervous system selective thyromimetic in the context of an in vitro MSA model. Oligodendrocyte precursor cells (OPCs) were obtained from transgenic mice overexpressing human α-syn specifically in oligodendrocytes (MBP29 mouse line), a well-described MSA model, and non-transgenic littermates. mRNA and protein expression analyses revealed a substantial rescue effect of sobetirome on myelin-specific proteins in control and α-syn overexpressing oligodendrocytes. Furthermore, myelination analysis using nanofibres confirmed that sobetirome increases both the length and number of myelinated segments per oligodendrocyte in primary murine α-syn overexpressing oligodendrocytes and their respective control. These results suggest that sobetirome may be a promising thyromimetic compound targeting an important neuropathological hallmark of MSA.


Asunto(s)
Enfermedades Desmielinizantes , Atrofia de Múltiples Sistemas , Fenoles , Ratones , Humanos , Animales , Atrofia de Múltiples Sistemas/tratamiento farmacológico , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Acetatos/metabolismo , Ratones Transgénicos , Oligodendroglía/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad
6.
Small ; 20(10): e2305467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875633

RESUMEN

Clean water is one of the most important resources of the planet but human-made contamination with diverse pollutants increases continuously. Microplastics (<5 mm diameter) which can have severe impacts on the environment, are present worldwide. Degradation processes lead to nanoplastics (<1 µm), which are potentially even more dangerous due to their increased bioavailability. State-of-the-art wastewater treatment plants show a deficit in effectively eliminating micro- and nanoplastics (MNP) from water, particularly in the case of nanoplastics. In this work, the magnetic removal of three different MNP types across three orders of magnitude in size (100 nm-100 µm) is investigated systematically. Superparamagnetic iron oxide nanoparticles (SPIONs) tend to attract oppositely charged MNPs and form aggregates that can be easily collected by a magnet. It shows that especially the smallest fractions (100-300 nm) can be separated in ordinary high numbers (1013  mg-1 SPION) while the highest mass is removed for MNP between 2.5 and 5 µm. The universal trend for all three types of MNP can be fitted with a derived model, which can make predictions for optimizing SPIONs for specific size ranges in the future.

7.
Front Bioeng Biotechnol ; 11: 1254739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38047285

RESUMEN

Myocardial infarction is one of the major causes of mortality as well as morbidity around the world. Currently available treatment options face a number of drawbacks, hence cardiac tissue engineering, which aims to bioengineer functional cardiac tissue, for application in tissue repair, patient specific drug screening and disease modeling, is being explored as a viable alternative. To achieve this, an appropriate combination of cells, biomimetic scaffolds mimicking the structure and function of the native tissue, and signals, is necessary. Among scaffold fabrication techniques, three-dimensional printing, which is an additive manufacturing technique that enables to translate computer-aided designs into 3D objects, has emerged as a promising technique to develop cardiac patches with a highly defined architecture. As a further step toward the replication of complex tissues, such as cardiac tissue, more recently 3D bioprinting has emerged as a cutting-edge technology to print not only biomaterials, but also multiple cell types simultaneously. In terms of bioinks, biomaterials isolated from natural sources are advantageous, as they can provide exceptional biocompatibility and bioactivity, thus promoting desired cell responses. An ideal biomimetic cardiac patch should incorporate additional functional properties, which can be achieved by means of appropriate functionalization strategies. These are essential to replicate the native tissue, such as the release of biochemical signals, immunomodulatory properties, conductivity, enhanced vascularization and shape memory effects. The aim of the review is to present an overview of the current state of the art regarding the development of biomimetic 3D printed natural biomaterial-based cardiac patches, describing the 3D printing fabrication methods, the natural-biomaterial based bioinks, the functionalization strategies, as well as the in vitro and in vivo applications.

9.
PLoS One ; 18(9): e0291679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733804

RESUMEN

To allow an efficient protection against viruses like the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), it is important to avoid their spreading by using filtering face pieces (FFP), which are categorized by different standards according to their filtration efficiency. In this study, we subjected six brands of FFP2 standard masks to three different conditions and subsequently analysed them for their filtration performance to evaluate potentials for reusability. The conditions comprised changes of temperature and air humidity, an exposure to isopropyl alcohol (IPA) and an autoclave sterilization. While four of six masks consisted of electrostatically treated melt blown non-wovens, two masks were fabricated using a nanofibrous multilayer system. Due to the absence of prior electrostatic treatment, the nano-masks did not show a significant change in filtration efficiency when discharged by IPA, unlike the melt blown nonwoven masks showing a significant decrease of filtration efficiency down to around 50% at a particle size of 0.3 µm. However, most melt blown masks maintained a sufficient filtration efficiency after all other treatments with even better results than the nanofibrous masks. This was particularly the case for the capacity to filter smallest particles/droplets with a size of around 0.1 µm, which is below the range of typical filtering standards and important for the retention of virally contaminated nano-aerosols or unattached viruses. After temperature/humidity variation and autoclave sterilization, melt blown masks were able to retain a filtration efficiency up to over 90% at 0.1 µm contrary to nano-masks showing a decrease down to around 70%. Based on their better filtration performance, lower price and potential reusability, we conclude that electret melt blown masks are the preferable type of FFP2 masks.


Asunto(s)
COVID-19 , Cocaína , Humanos , SARS-CoV-2 , 2-Propanol , Filtración
10.
Adv Mater ; 35(52): e2305911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37655652

RESUMEN

3D-bioprinting is a promising technology to produce human tissues as drug screening tool or for organ repair. However, direct printing of living cells has proven difficult. Here, a method is presented to directly 3D-bioprint human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes embedded in a collagen-hyaluronic acid ink, generating centimeter-sized functional ring- and ventricle-shaped cardiac tissues in an accurate and reproducible manner. The printed tissues contain hiPSC-derived cardiomyocytes with well-organized sarcomeres and exhibit spontaneous and regular contractions, which persist for several months and are able to contract against passive resistance. Importantly, beating frequencies of the printed cardiac tissues can be modulated by pharmacological stimulation. This approach opens up new possibilities for generating complex functional cardiac tissues as models for advanced drug screening or as tissue grafts for organ repair or replacement.


Asunto(s)
Bioimpresión , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , Ingeniería de Tejidos , Impresión Tridimensional
11.
Bioengineering (Basel) ; 10(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37508778

RESUMEN

Biomaterials with characteristics similar to extracellular matrix and with suitable bioprinting properties are essential for vascular tissue engineering. In search for suitable biomaterials, this study investigated the three hydrogels alginate/hyaluronic acid/gelatin (Alg/HA/Gel), pre-crosslinked alginate di-aldehyde with gelatin (ADA-GEL), and gelatin methacryloyl (GelMA) with respect to their mechanical properties and to the survival, migration, and proliferation of human umbilical vein endothelial cells (HUVECs). In addition, the behavior of HUVECs was compared with their behavior in Matrigel. For this purpose, HUVECs were mixed with the inks both as single cells and as cell spheroids and printed using extrusion-based bioprinting. Good printability with shape fidelity was determined for all inks. The rheological measurements demonstrated the gelling consistency of the inks and shear-thinning behavior. Different Young's moduli of the hydrogels were determined. However, all measured values where within the range defined in the literature, leading to migration and sprouting, as well as reconciling migration with adhesion. Cell survival and proliferation in ADA-GEL and GelMA hydrogels were demonstrated for 14 days. In the Alg/HA/Gel bioink, cell death occurred within 7 days for single cells. Sprouting and migration of the HUVEC spheroids were observed in ADA-GEL and GelMA. Similar behavior of the spheroids was seen in Matrigel. In contrast, the spheroids in the Alg/HA/Gel ink died over the time studied. It has been shown that Alg/HA/Gel does not provide a good environment for long-term survival of HUVECs. In conclusion, ADA-GEL and GelMA are promising inks for vascular tissue engineering.

12.
ACS Biomater Sci Eng ; 9(7): 4149-4167, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37352499

RESUMEN

This study aimed to develop three-dimensional (3D)-printed hydrogels containing phytotherapeutic agents as multifunctional wound dressings. In this regard, 3D-printed sodium alginate (ALG)-xanthan gum (XAN) hydrogels incorporated with different clove essential oil (CLV) concentrations were produced by the extrusion-based 3D-printing technology. Rheology measurements, filament fusion, and filament collapse analyses indicated that XAN's blending overcame the challenges associated with ALG's printability and shape fidelity. Attenuated total reflection-Fourier-transform infrared (ATR-FTIR) spectra and total phenolic content assay confirmed the presence of CLV in the 3D-printed hydrogels. Additionally, the releasing profile showed that CLV exhibited long-term release for up to 28 days. Furthermore, the incorporation of CLV increased 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging while reducing the S. aureus and E. coli relative bacterial viability; thereby, the CLV incorporation enhanced the 3D-printed ALG-XAN hydrogel antioxidant and antibacterial activity. In addition, anti-inflammatory activity was assessed using Raw 264.7 macrophage-like cells, and the results demonstrated that CLV reduced nitric oxide (NO) concentration in medium, indicating a potential anti-inflammatory effect. Moreover, in vitro cytotoxicity results showed that the incorporation of CLV has no toxic effect on NHDF cells, whereas the proliferation of NHDF cells exhibited a dose-dependent response. In conclusion, the present study shows not only the development of a new ALG-XAN biomaterial ink but also the potential benefit of natural phytotherapeutics incorporated into 3D-printed hydrogels as a multifunctional wound dressing.


Asunto(s)
Aceites Volátiles , Aceites Volátiles/farmacología , Hidrogeles/farmacología , Hidrogeles/química , Escherichia coli , Staphylococcus aureus , Cicatrización de Heridas , Impresión Tridimensional
13.
Small Methods ; 7(10): e2201717, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37349897

RESUMEN

The development of bio-inks capable of being 3D-printed into cell-containing bio-fabricates with sufficient shape fidelity is highly demanding. Structural integrity and favorable mechanical properties can be achieved by applying high polymer concentrations in hydrogels. Unfortunately, this often comes at the expense of cell performance since cells may become entrapped in the dense matrix. This drawback can be addressed by incorporating fibers as reinforcing fillers that strengthen the overall bio-ink structure and provide a second hierarchical micro-structure to which cells can adhere and align, resulting in enhanced cell activity. In this work, the potential impact of collagen-coated short polycaprolactone-fibers on cells after being printed in a hydrogel is systematically studied. The matrix is composed of eADF4(C16), a recombinant spider silk protein that is cytocompatible but non-adhesive for cells. Consequently, the impact of fibers could be exclusively examined, excluding secondary effects induced by the matrix. Applying this model system, a significant impact of such fillers on rheology and cell behavior is observed. Strikingly, it could be shown that fibers reduce cell viability upon printing but subsequently promote cell performance in the printed construct, emphasizing the need to distinguish between in-print and post-print impact of fillers in bio-inks.


Asunto(s)
Tinta , Seda , Seda/química , Hidrogeles/farmacología , Hidrogeles/química , Polímeros , Reología
14.
BMC Mol Cell Biol ; 24(1): 18, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189080

RESUMEN

BACKGROUND: For the purpose of skeletal muscle engineering, primary myoblasts (Mb) and adipogenic mesenchymal stem cells (ADSC) can be co-cultured and myogenically differentiated. Electrospun composite nanofiber scaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability Although growth differentiation factor 11 (GDF11) has been proposed as a rejuvenating circulating factor, restoring skeletal muscle function in aging mice, some studies have also described a harming effect of GDF11. Therefore, the aim of the study was to analyze the effect of GDF11 on co-cultures of Mb and ADSC on poly-ε-caprolactone (PCL)-collagen I-polyethylene oxide (PEO)-nanofibers. RESULTS: Human Mb were co-cultured with ADSC two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-PEO-nanofibers. Differentiation media were either serum-free with or without GDF11, or serum containing as in a conventional differentiation medium. Cell viability was higher after conventional myogenic differentiation compared to serum-free and serum-free + GDF11 differentiation as was creatine kinase activity. Immunofluorescence staining showed myosine heavy chain expression in all groups after 28 days of differentiation without any clear evidence of more or less pronounced expression in either group. Gene expression of myosine heavy chain (MYH2) increased after serum-free + GDF11 stimulation compared to serum-free stimulation alone. CONCLUSIONS: This is the first study analyzing the effect of GDF11 on myogenic differentiation of Mb and ADSC co-cultures under serum-free conditions. The results of this study show that PCL-collagen I-PEO-nanofibers represent a suitable matrix for 3D myogenic differentiation of Mb and ADSC. In this context, GDF11 seems to promote myogenic differentiation of Mb and ADSC co-cultures compared to serum-free differentiation without any evidence of a harming effect.


Asunto(s)
Células Madre Mesenquimatosas , Nanofibras , Humanos , Ratones , Animales , Andamios del Tejido , Polietileno/metabolismo , Polietileno/farmacología , Poliésteres/metabolismo , Poliésteres/farmacología , Células Madre Mesenquimatosas/metabolismo , Mioblastos/metabolismo , Diferenciación Celular , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Colágeno/metabolismo , Colágeno/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo
16.
J Artif Organs ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099051

RESUMEN

Patient-tailored silicone plug for HeartMate 3™ left ventricular assist device explantation in two successive males proceeded successfully. Given medical therapeutic advancements, FDA-approved plug systems designed by LVAD manufacturers themselves will be necessary for the near future to provide a safe and simple device explantation alternative that fulfills all regulatory standards.

17.
Adv Healthc Mater ; 12(20): e2202408, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976709

RESUMEN

Cardiac tissue engineering is a promising strategy to prevent heart failure. However, several issues remain unsolved, including efficient electrical coupling and incorporating factors to enhance tissue maturation and vascularization. Herein, a biohybrid hydrogel that enhances beating properties of engineered cardiac tissues and allows drug release concurrently is developed. Gold nanoparticles (AuNPs) with different sizes (18-241 nm) and surface charges (33.9-55.4 mV) are synthesized by reducing gold (III) chloride trihydrate using branched polyethyleneimine (bPEI). These nanoparticles increase gel stiffness from ≈91 to ≈146 kPa, enhance electrical conductivity of collagen hydrogels from ≈40 to 49-68 mS cm-1 , and allow slow and steady release of loaded drugs. Engineered cardiac tissues based on bPEI-AuNP-collagen hydrogels and either primary or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes show enhanced beating properties. hiPSC-derived cardiomyocytes exhibit more aligned and wider sarcomeres in bPEI-AuNP-collagen hydrogels compared to collagen hydrogels. Furthermore, the presence of bPEI-AuNPs result in advanced electrical coupling evidenced by synchronous and homogenous calcium flux throughout the tissue. RNA-seq analyses are in agreement with these observations. Collectively, this data demonstrate the potential of bPEI-AuNP-collagen hydrogels to improve tissue engineering approaches to prevent heart failure and possibly treat diseases of other electrically sensitive tissues.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Nanopartículas del Metal , Humanos , Oro , Ingeniería de Tejidos , Polietileneimina , Hidrogeles/farmacología , Liberación de Fármacos , Miocitos Cardíacos , Colágeno
18.
Cells ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497034

RESUMEN

Electrospun nanofibers represent an ideal matrix for the purpose of skeletal muscle tissue engineering due to their highly aligned structure in the nanoscale, mimicking the extracellular matrix of skeletal muscle. However, they often consist of high-density packed fibers, which might impair vascularization. The integration of polyethylene oxide (PEO) sacrificial fibers, which dissolve in water, enables the creation of less dense structures. This study examines potential benefits of poly-ε-caprolactone-collagen I-PEO-nanoscaffolds (PCP) in terms of neovascularization and distribution of newly formed vessels compared to poly-ε-caprolactone -collagen I-nanoscaffolds (PC) in a modified arteriovenous loop model in the rat. For this purpose, the superficial inferior epigastric artery and vein as well as a motor nerve branch were integrated into a multilayer three-dimensional nanofiber scaffold construct, which was enclosed by an isolation chamber. Numbers and spatial distribution of sprouting vessels as well as macrophages were analyzed via immunohistochemistry after two and four weeks of implantation. After four weeks, aligned PC showed a higher number of newly formed vessels, regardless of the compartments formed in PCP by the removal of sacrificial fibers. Both groups showed cell influx and no difference in macrophage invasion. In this study, a model of combined axial vascularization and neurotization of a PCL-collagen I-nanofiber construct could be established for the first time. These results provide a foundation for the in vivo implantation of cells, taking a major step towards the generation of functional skeletal muscle tissue.


Asunto(s)
Nanofibras , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Poliésteres/química , Nanofibras/química , Colágeno/química , Colágeno Tipo I , Polietilenglicoles/química
19.
J Vis Exp ; (188)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36282700

RESUMEN

With the evolution of suture materials, there has been a change in paradigms in primary and secondary tendon repair. Improved mechanical properties allow more aggressive rehabilitation and earlier recovery. However, for the repair to hold against higher mechanical demands, more advanced suturing and knotting techniques must be assessed in combination with those materials. In this protocol, the use of polytetrafluoroethylene (PTFE) as a suture material in combination with different repair techniques was investigated. In the first part of the protocol, both linear tension strength and elongation of knotted against not-knotted strands of three different materials used in flexor tendon repair were evaluated. The three different materials are polypropylene (PPL), ultra-high molecular weight polyethylene with a braided jacket of polyester (UHMWPE), and polytetrafluoroethylene (PTFE). In the next part (ex vivo experiments with cadaveric flexor tendons), the behavior of PTFE using different suture techniques was assessed and compared with PPL and UHMWPE. This experiment is comprised of four steps: harvesting of the flexor tendons from fresh cadaveric hands, transection of the tendons in a standardized manner, tendon repair by four different techniques, mounting, and measurement of the tendon repairs on a standard linear dynamometer. The UHMWPE and PTFE showed comparable mechanical properties and were significantly superior to PPL in terms of linear traction strength. Repairs with four- and six-strand techniques proved stronger than two-strand techniques. Handling and knotting of PTFE are a challenge due to very low surface friction but fastening of the four- or six-strand repair is comparatively easy to achieve. Surgeons routinely use PTFE suture material in cardiovascular surgery and breast surgery. The PTFE strands are suitable for use in tendon surgery, providing a robust tendon repair so that early active motion regimens for rehabilitation can be applied.


Asunto(s)
Politetrafluoroetileno , Traumatismos de los Tendones , Humanos , Traumatismos de los Tendones/cirugía , Polipropilenos , Resistencia a la Tracción , Suturas , Técnicas de Sutura , Tendones , Poliésteres , Cadáver , Fenómenos Biomecánicos
20.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955588

RESUMEN

Highly oriented electrospun conductive nanofibrous biocomposites (CNBs) of polylactic acid (PLA) and polyaniline (PANi) are fabricated using electrospinning. At the percolation threshold (φc), the growth of continuous paths between PANi particles leads to a steep increase in the electrical conductivity of fibers, and the McLachlan equation is fitted to identify φc. Annealing generates additional conductive channels, which lead to higher conductivity for dynamic percolation. For the first time, dynamic percolation is investigated for revealing time-temperature superposition in oriented conductive nanofibrous biocomposites. The crystallinity (χc) displays a linear dependence on annealing temperature within the confined fiber of CNBs. The increase in crystallinity due to annealing also increases the Young's modulus E of CNBs. The present study outlines a reliable approach to determining the conductivity and elasticity of nanofibers that are highly desirable for a wide range of biological tissue applications.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Elasticidad , Conductividad Eléctrica , Poliésteres/farmacología , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...