Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Soc Trans ; 30(4): 595-600, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12196144

RESUMEN

All tetrapyrroles are synthesized through a branched pathway, and although each tetrapyrrole receives unique modifications around the ring periphery, they all share the unifying feature of a central metal ion. Each pathway maintains a unique metal ion chelatase, and several tertiary structures have been determined, including those of the protoporphyrin ferrochelatase from both human and Bacillus subtilus, and the cobalt chelatase CbiK. These enzymes exhibit strong structural similarity and appear to function by a similar mechanism. Met8p, from Saccharomyces cerevisiae, catalyses ferrochelation during the synthesis of sirohaem, and the structure reveals a novel chelatase architecture whereby both ferrochelation and NAD(+)-dependent dehydrogenation take place in a single bifunctional active site. Asp-141 appears to participate in both catalytic reactions. The final common biosynthetic step in tetrapyrrole biosynthesis is the generation of uroporphyrinogen by uroporphyrinogen III synthase, whereby the D ring of hydroxymethylbilane is flipped during ring closure to generate the asymmetrical structure of uroporphyrinogen III. The recently derived structure of uroporphyrinogen III synthase reveals a bi-lobed structure in which the active site lies between the domains.


Asunto(s)
Quelantes , Metales , Uroporfirinógeno III Sintetasa/química , Bacillus subtilis/enzimología , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína , Pirroles/química , Saccharomyces cerevisiae/enzimología , Tetrapirroles
2.
EMBO J ; 20(21): 5832-9, 2001 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11689424

RESUMEN

Uroporphyrinogen III synthase, U3S, the fourth enzyme in the porphyrin biosynthetic pathway, catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrino gen III, which is used in several different pathways to form heme, siroheme, chlorophyll, F(430) and vitamin B(12). U3S activity is essential in all organisms, and decreased activity in humans leads to the autosomal recessive disorder congenital erythropoetic porphyria. We have determined the crystal structure of recombinant human U3S at 1.85 A resolution. The protein folds into two alpha/beta domains connected by a beta-ladder. The active site appears to be located between the domains, and variations in relative domain positions observed between crystallographically independent molecules indicates the presence of flexibility that may be important in the catalytic cycle. Possible mechanisms of catalysis were probed by mutating each of the four invariant residues in the protein that have titratable side chains. Additionally, six other highly conserved and titratable side chains were also mutated. In no case, however, did one of these mutations abolish enzyme activity, suggesting that the mechanism does not require acid/base catalysis.


Asunto(s)
Modelos Moleculares , Uroporfirinógeno III Sintetasa/química , Sitios de Unión/fisiología , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Porfiria Eritropoyética/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/fisiología
3.
Blood ; 98(12): 3179-85, 2001 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11719352

RESUMEN

Functional consequences of 12 mutations-10 missense, 1 splicing defect, and 1 frameshift mutation-were characterized in the uroporphyrinogen decarboxylase (URO-D) gene found in Utah pedigrees with familial porphyria cutanea tarda (F-PCT). All but one mutation altered a restriction site in the URO-D gene, permitting identification of affected relatives using a combination of polymerase chain reaction and restriction enzyme digestion. In a bacterial expression system, 3 of the missense mutants were found in inclusion bodies, but 7 were expressed as soluble proteins. Enzymatic activity of soluble, recombinant mutant URO-D genes ranged from 29% to 94% of normal. URO-D mRNA levels in Epstein-Barr-virus transformed cells derived from patients were normal (with the exception of the frameshift mutation) even though protein levels were lower than normal, suggesting that missense mutations generally cause unstable URO-Ds in vivo. The crystal structures of 3 mutant URO-Ds were solved, and the structural consequences of the mutations were defined. All missense mutations reported here and by others were mapped to the crystal structure of URO-D, and structural effects were predicted. These studies define structural and functional consequences of URO-D mutations occurring in patients with F-PCT.


Asunto(s)
Mutación , Porfiria Cutánea Tardía/genética , Uroporfirinógeno Descarboxilasa/genética , Línea Celular Transformada , Cristalización , Mutación del Sistema de Lectura , Expresión Génica , Herpesvirus Humano 4 , Humanos , Linfocitos/química , Modelos Moleculares , Estructura Molecular , Mutación Missense , Linaje , Reacción en Cadena de la Polimerasa , Empalme del ARN , ARN Mensajero/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Uroporfirinógeno Descarboxilasa/química , Uroporfirinógeno Descarboxilasa/metabolismo , Utah
4.
Acta Crystallogr D Biol Crystallogr ; 57(Pt 6): 867-9, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11375511

RESUMEN

Sirohaem, the prosthetic group of assimilatory sulfite and nitrite reductases, is a modified tetrapyrrole that belongs to the same fraternity of metallo-prosthetic groups as haem, chlorophyll, cobalamin and coenzyme F430 [Warren & Scott (1990), Trends Biochem Sci. 15, 486-491]. In Saccharomyces cerevisiae, the last step in the biosynthesis of sirohaem involves Met8p, a bifunctional enzyme responsible for both the NAD(+)-dependent dehydrogenation of the corrin ring and ferrochelation. Optimization of the protein storage buffer according to the results of crystallization trials resulted in a more monodisperse protein solution. Crystals were grown that diffracted to 2.1 A.


Asunto(s)
Ferroquelatasa , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Tampones (Química) , Cristalización , Cristalografía por Rayos X , Complejos Multienzimáticos/química , Conformación Proteica , Saccharomyces cerevisiae/química
5.
J Biol Chem ; 275(51): 40316-23, 2000 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-11007789

RESUMEN

The ability of Porphyromonas gingivalis to biosynthesize tetrapyrroles de novo has been investigated. Extracts of the bacterium do not possess activity for 5- aminolevulinic-acid dehydratase or porphobilinogen deaminase, two key enzymes involved in the synthesis of uroporphyrinogen III. Similarly, it was not possible to detect any genetic evidence for these early enzymes with the use of degenerate polymerase chain reaction. However, the bacterium does appear to harbor some of the enzymes for cobalamin biosynthesis since cobyric acid, a pathway intermediate, was converted into cobinamide. Furthermore, degenerate polymerase chain reaction with primers to cbiP, which encodes cobyric-acid synthase, produced a fragment with a high degree of identity to Salmonella typhimurium cbiP. Indeed, the recently released genome sequence data confirmed the presence of cbiP together with 14 other genes of the cobalamin pathway. A number of these genes were cloned and functionally characterized. Although P. gingivalis harbors all the genes necessary to convert precorrin-2 into cobalamin, it is missing the genes for the synthesis of precorrin-2. Either the organism has a novel pathway for the synthesis of precorrin-2, or more likely, it has lost this early part of the pathway. The remainder of the pathway may be being maintained to act as a salvage route for corrin synthesis.


Asunto(s)
Porfirinas/metabolismo , Porphyromonas gingivalis/metabolismo , Vitamina B 12/biosíntesis , Secuencia de Bases , Clonación Molecular , Corrinoides , Cartilla de ADN , Genes Bacterianos , Prueba de Complementación Genética , Metilmalonil-CoA Mutasa/genética , Reacción en Cadena de la Polimerasa , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/crecimiento & desarrollo
6.
Cell Mol Life Sci ; 57(13-14): 1880-93, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11215515

RESUMEN

The biosynthesis of cobalamin (vitamin B12) is described, revealing how the concerted action of around 30 enzyme-mediated steps results in the synthesis of one of Nature's most structurally complex 'small molecules'. The plethora of genome sequences has meant that bacteria capable of cobalamin synthesis can be easily identified and their biosynthetic genes compared. Whereas only a few years ago cobalamin synthesis was thought to occur by one of two routes, there are apparently a number of variations on these two pathways, where the major differences seem to be concerned with the process of ring contraction. A comparison of what is currently known about these pathways is presented. Finally, the process of cobalt chelation is discussed and the structure/function of the cobalt chelatase associated with the oxygen-independent pathway (CbiK) is described.


Asunto(s)
Bacterias/enzimología , Bacterias/metabolismo , Proteínas Bacterianas , Vitamina B 12/biosíntesis , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacología , Bacterias/genética , Corrinoides , Genes Bacterianos/genética , Genoma Bacteriano , Liasas/química , Liasas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Estructura Molecular , Porfirinas/biosíntesis , Porfirinas/química , Porfirinas/metabolismo , Conformación Proteica , Pirroles/química , Pirroles/metabolismo , Tetrapirroles , Vitamina B 12/química , Vitamina B 12/metabolismo
7.
Biochemistry ; 38(33): 10660-9, 1999 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-10451360

RESUMEN

Prosthetic groups such as heme, chlorophyll, and cobalamin (vitamin B(12)) are characterized by their branched biosynthetic pathway and unique metal insertion steps. The metal ion chelatases can be broadly classed either as single-subunit ATP-independent enzymes, such as the anaerobic cobalt chelatase and the protoporphyrin IX (PPIX) ferrochelatase, or as heterotrimeric, ATP-dependent enzymes, such as the Mg chelatase involved in chlorophyll biosynthesis. The X-ray structure of the anaerobic cobalt chelatase from Salmonella typhimurium, CbiK, has been solved to 2.4 A resolution. Despite a lack of significant amino acid sequence similarity, the protein structure is homologous to that of Bacillus subtilis PPIX ferrochelatase. Both enzymes contain a histidine residue previously identified as the metal ion ligand, but CbiK contains a second histidine in place of the glutamic acid residue identified as a general base in PPIX ferrochelatase. Site-directed mutagenesis has confirmed a role for this histidine and a nearby glutamic acid in cobalt binding, modulating metal ion specificity as well as catalytic efficiency. Contrary to the predicted protoporphyrin binding site in PPIX ferrochelatase, the precorrin-2 binding site in CbiK is clearly defined within a large horizontal cleft between the N- and C-terminal domains. The structural similarity has implications for the understanding of the evolution of this branched biosynthetic pathway.


Asunto(s)
Hemo/biosíntesis , Liasas/química , Liasas/metabolismo , Pirroles/metabolismo , Vitamina B 12/biosíntesis , Secuencia de Aminoácidos , Anaerobiosis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Simulación por Computador , Cristalografía por Rayos X , Evolución Molecular , Liasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Espectrofotometría , Tetrapirroles
8.
Eur J Biochem ; 254(2): 341-6, 1998 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-9660189

RESUMEN

The Bacillus megaterium cbiF, encoding the cobalt-precorrin-4 S-adenosyl-L-methionine-dependent transmethylase of the anaerobic cobalamin biosynthetic pathway, has been cloned and overexpressed as a His-tagged recombinant protein in Escherichia coli. The protein was purified to homogeneity by a combination of metal chelate chromatography and high-resolution anion-exchange chromatography. The protein migrated with a subunit mass of 31 kDa by SDS/PAGE and with a molecular mass of 62 kDa by analytical gel filtration, suggesting that the native recombinant protein is a homodimer. The His-tagged protein was physiologically active as it was able to complement a Salmonella typhimurium cbiF mutant. However, the protein did not bind S-adenosyl-L-methionine with the same avidity as observed with other corrin biosynthetic transmethylases. A crystallisation screen of the purified protein led to the identification of two discrete crystal forms. One of these forms has been characterised and a full data set collected.


Asunto(s)
Bacillus megaterium/enzimología , Bacillus megaterium/genética , Proteínas de Escherichia coli , Metiltransferasas/genética , Vitamina B 12/biosíntesis , Secuencia de Bases , Clonación Molecular , Cobalto/metabolismo , Cristalización , Cartilla de ADN/genética , Dimerización , Expresión Génica , Genes Bacterianos , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Peso Molecular , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo
9.
Nat Struct Biol ; 5(7): 585-92, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9665173

RESUMEN

Biosynthesis of the corrin ring of vitamin B12 requires the action of six S-adenosyl-L-methionine (AdoMet) dependent transmethylases, closely related in sequence. The first X-ray structure of one of these, cobalt-precorrin-4 transmethylase, CbiF, from Bacillus megaterium has been determined to a resolution of 2.4 A. CbiF contains two alphabeta domains forming a trough in which S-adenosyl-L-homocysteine (AdoHcy) binds. The location of AdoHcy and a number of conserved residues, helps define the precorrin binding site. A second crystal form determined at 3.1 A resolution highlights the flexibility of two loops around this site. CbiF employs a unique mode of AdoHcy binding and represents a new class of transmethylase.


Asunto(s)
Bacillus megaterium/enzimología , Metiltransferasas/química , Vitamina B 12/biosíntesis , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , S-Adenosilhomocisteína/química , Alineación de Secuencia
10.
J Biol Chem ; 271(31): 18780-8, 1996 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-8702535

RESUMEN

X-ray crystal structures of the Yersinia tyrosine phosphatase (PTPase) in complex with tungstate and nitrate have been solved to 2. 4-A resolution. Tetrahedral tungstate, WO42-, is a competitive inhibitor of the enzyme and is isosteric with the substrate and product of the catalyzed reaction. Planar nitrate, NO3-, is isosteric with the PO3 moiety of a phosphotransfer transition state. The crystal structures of the Yersinia PTPase with and without ligands, together with biochemical data, permit modeling of key steps along the reaction pathway. These energy-minimized models are consistent with a general acid-catalyzed, in-line displacement of the phosphate moiety to Cys403 on the enzyme, followed by attack by a nucleophilic water molecule to release orthophosphate. This nucleophilic water molecule is identified in the crystal structure of the nitrate complex. The active site structure of the PTPase is compared to alkaline phosphatase, which employs a similar phosphomonoester hydrolysis mechanism. Both enzymes must stabilize charges at the nucleophile, the PO3 moiety of the transition state, and the leaving group. Both an associative (bond formation preceding bond cleavage) and a dissociative (bond cleavage preceding bond formation) mechanism were modeled, but a dissociative-like mechanism is favored for steric and chemical reasons. Since nearly all of the 47 invariant or highly conserved residues of the PTPase domain are clustered at the active site, we suggest that the mechanism postulated for the Yersinia enzyme is applicable to all the PTPases.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Yersinia enterocolitica/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Electroquímica , Ligandos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Nitratos/química , Conformación Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Termodinámica , Compuestos de Tungsteno/química , Yersinia enterocolitica/genética
11.
Protein Sci ; 4(9): 1904-13, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8528087

RESUMEN

Protein tyrosine phosphatases (PTPases) play critical roles in the intracellular signal transduction pathways that regulate cell transformation, growth, and proliferation. The structures of several different PTPases have revealed a conserved active site architecture in which a phosphate-binding loop, together with an invariant arginine, cradle the phosphate of a phosphotyrosine substrate and poise it for nucleophilic attack by an invariant cysteine nucleophile. We previously reported that binding of tungstate to the Yop51 PTPase from Yersinia induced a loop conformational change that moved aspartic acid 356 into the active site, where it can function as a general acid. This is consistent with the aspartic acid donating a proton to the tyrosyl leaving group during the initial hydrolysis step. In this report, using a similar structure of the inactive Cys 403-->Ser mutant of the Yersinia PTPase complexed with sulfate, we detail the structural and functional details of this conformational change. In response to oxyanion binding, small perturbations occur in active site residues, especially Arg 409, and trigger the loop to close. Interestingly, the peptide bond following Asp 356 has flipped to ligate a buried, active site water molecule that also hydrogen bonds to the bound sulfate anion and two invariant glutamines. Loop closure also significantly decreases the solvent accessibility of the bound oxyanion and could effectively shield catalytic intermediates from phosphate acceptors other than water. We speculate that the intrinsic loop flexibility of different PTPases may be related to their catalytic rate and may play a role in the wide range of activities observed within this enzyme family.


Asunto(s)
Conformación Proteica , Proteínas Tirosina Fosfatasas/química , Yersinia/enzimología , Secuencia de Aminoácidos , Ácido Aspártico/química , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Cisteína/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Tirosina Fosfatasas/metabolismo , Serina/química , Sulfatos/química , Sulfatos/metabolismo , Compuestos de Tungsteno/metabolismo , Agua/química
12.
Biochemistry ; 33(51): 15266-70, 1994 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-7803389

RESUMEN

The Yersinia protein tyrosine phosphatase (PTPase) was identified in the genus of bacteria responsible for the plague or the Black Death and was shown to be essential for pathogenesis. The three-dimensional structure of the catalytic domain of the Yersinia PTPase has been solved, and this information along with a detailed kinetic analysis has led to a better understanding of the catalytic mechanism of the PTPase. Mutational and chemical modification experiments have established that an invariant Cys residue (Cys403) is directly involved in formation of a covalent phosphoenzyme intermediate. We have shown that Arg409 plays a critical role in PTPase action and that the Cys(X)5Arg active site motif forms a phosphate-binding loop which appears to represent the essential features necessary for catalysis by the PTPases, the dual specific phosphatases, and the low molecular weight acid phosphatases.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos/química , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Relación Estructura-Actividad , Yersinia/enzimología
13.
Nature ; 370(6490): 571-5, 1994 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-8052312

RESUMEN

Protein tyrosine phosphatases (PTPases) and kinases coregulate the critical levels of phosphorylation necessary for intracellular signalling, cell growth and differentiation. Yersinia, the causative bacteria of the bubonic plague and other enteric diseases, secrete an active PTPase, Yop51, that enters and suppresses host immune cells. Though the catalytic domain is only approximately 20% identical to human PTP1B, the Yersinia PTPase contains all of the invariant residues present in eukaryotic PTPases, including the nucleophilic Cys 403 which forms a phosphocysteine intermediate during catalysis. We present here structures of the unliganded (2.5 A resolution) and tungstate-bound (2.6 A) crystal forms which reveal that Cys 403 is positioned at the centre of a distinctive phosphate-binding loop. This loop is at the hub of several hydrogen-bond arrays that not only stabilize a bound oxyanion, but may activate Cys 403 as a reactive thiolate. Binding of tungstate triggers a conformational change that traps the oxyanion and swings Asp 356, an important catalytic residue, by approximately 6 A into the active site. The same anion-binding loop in PTPases is also found in the enzyme rhodanese.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Tirosina Fosfatasas/química , Yersinia enterocolitica/enzimología , Secuencia de Aminoácidos , Cristalografía , Cisteína , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Compuestos de Tungsteno/química
14.
J Biol Chem ; 267(33): 23759-66, 1992 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-1429715

RESUMEN

The Yersinia protein tyrosine phosphatase (PTPase) Yop51, a C235R point mutation (Yop51*), and a protein lacking the first 162 amino acids at the NH2 terminus (Yop51*delta 162) have been overexpressed in Escherichia coli and purified to homogeneity through the use of CM Sephadex C25 cation exchange chromatography followed by Sephadex G-100 gel filtration. Greater than 50 mg of homogeneous Yop51* and Yop51*delta 162 can be obtained from a single liter of bacterial culture, whereas the same procedure yields only 5 mg of pure Yop51. Large, diffraction-quality crystals have been obtained for Yop51*delta 162. Size exclusion chromatography, sedimentation equilibrium, and enzyme concentration dependence experiments have established that the Yersinia PTPases exist and function as monomers in solution. Yop51 and Yop51* display identical UV, CD, and fluorescence spectra and have identical kinetic and structural stability properties. These full-length Yersinia PTPases have 31% alpha-helix, an emission maximum of 342 nm, a turn-over number of 1200 s-1 at pH 5.0, 30 degrees C, and an unfolding delta G value of 6 kcal/mol at 25 degrees C. Yop51*delta 162 has very similar kinetic and fluorescence characteristics to the full-length molecules, whereas its CD and UV spectra show noticeable differences due to the elimination of 162 NH2-terminal residues. The Yersinia PTPases are by far the most active PTPases known, and their kinetic parameters are extremely sensitive to the ionic strength of reaction medium.


Asunto(s)
Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Yersinia/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Dicroismo Circular , Clonación Molecular , Escherichia coli/genética , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Plásmidos , Reacción en Cadena de la Polimerasa , Conformación Proteica , Pliegue de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Urea , Yersinia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...