Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3692, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693186

RESUMEN

Over the last decades, cognitive neuroscience has identified a distributed set of brain regions that are critical for attention. Strong anatomical overlap with brain regions critical for oculomotor processes suggests a joint network for attention and eye movements. However, the role of this shared network in complex, naturalistic environments remains understudied. Here, we investigated eye movements in relation to (un)attended sentences of natural speech. Combining simultaneously recorded eye tracking and magnetoencephalographic data with temporal response functions, we show that gaze tracks attended speech, a phenomenon we termed ocular speech tracking. Ocular speech tracking even differentiates a target from a distractor in a multi-speaker context and is further related to intelligibility. Moreover, we provide evidence for its contribution to neural differences in speech processing, emphasizing the necessity to consider oculomotor activity in future research and in the interpretation of neural differences in auditory cognition.


Asunto(s)
Atención , Percepción Auditiva , Movimientos Oculares , Habla , Humanos , Magnetoencefalografía , Tecnología de Seguimiento Ocular , Fenómenos Fisiológicos Oculares , Percepción del Habla , Cognición , Audición , Factores de Tiempo , Masculino , Femenino , Adulto , Inteligibilidad del Habla
2.
Psychophysiology ; 61(1): e14435, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691098

RESUMEN

Predictive processing theories, which model the brain as a "prediction machine", explain a wide range of cognitive functions, including learning, perception and action. Furthermore, it is increasingly accepted that aberrant prediction tendencies play a crucial role in psychiatric disorders. Given this explanatory value for clinical psychiatry, prediction tendencies are often implicitly conceptualized as individual traits or as tendencies that generalize across situations. As this has not yet explicitly been shown, in the current study, we quantify to what extent the individual tendency to anticipate sensory features of high probability generalizes across modalities. Using magnetoencephalography (MEG), we recorded brain activity while participants were presented with a sequence of four different (either visual or auditory) stimuli, which changed according to predefined transitional probabilities of two entropy levels: ordered vs. random. Our results show that, on a group-level, under conditions of low entropy, stimulus features of high probability are preactivated in the auditory but not in the visual modality. Crucially, the magnitude of the individual tendency to predict sensory events seems not to correlate between the two modalities. Furthermore, reliability statistics indicate poor internal consistency, suggesting that the measures from the different modalities are unlikely to reflect a single, common cognitive process. In sum, our findings suggest that quantification and interpretation of individual prediction tendencies cannot be generalized across modalities.


Asunto(s)
Percepción Auditiva , Percepción Visual , Humanos , Reproducibilidad de los Resultados , Encéfalo , Magnetoencefalografía , Estimulación Acústica
3.
Cereb Cortex ; 33(11): 6608-6619, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36617790

RESUMEN

Listening can be conceptualized as a process of active inference, in which the brain forms internal models to integrate auditory information in a complex interaction of bottom-up and top-down processes. We propose that individuals vary in their "prediction tendency" and that this variation contributes to experiential differences in everyday listening situations and shapes the cortical processing of acoustic input such as speech. Here, we presented tone sequences of varying entropy level, to independently quantify auditory prediction tendency (as the tendency to anticipate low-level acoustic features) for each individual. This measure was then used to predict cortical speech tracking in a multi speaker listening task, where participants listened to audiobooks narrated by a target speaker in isolation or interfered by 1 or 2 distractors. Furthermore, semantic violations were introduced into the story, to also examine effects of word surprisal during speech processing. Our results show that cortical speech tracking is related to prediction tendency. In addition, we find interactions between prediction tendency and background noise as well as word surprisal in disparate brain regions. Our findings suggest that individual prediction tendencies are generalizable across different listening situations and may serve as a valuable element to explain interindividual differences in natural listening situations.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Habla , Estimulación Acústica/métodos , Ruido
4.
Brain Behav ; 8(1): e00877, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29568680

RESUMEN

Introduction: In this functional magnetic resonance imaging (fMRI) study, we compared task performance together with brain activation in a visuospatial task (VST) and a letter detection task (LDT) between longtime action video gamers (N = 14) and nongamers (N = 14) in order to investigate possible effects of gaming on cognitive and brain abilities. Methods: Based on previous research, we expected advantages in performance for experienced action video gamers accompanied by less activation (due to higher efficiency) as measured by fMRI in the frontoparietal attention network. Results: Contrary to these expectations, we did not find differences in overall task performance, nor in brain activation during the VST. We identified, however, a significantly different increase in the BOLD signal from a baseline task to the LDT in action video gamers compared with nongamers. This increased activation was evident in a number of frontoparietal regions including the left middle paracingulate cortex, the left superior frontal sulcus, the opercular part of the left inferior frontal gyrus, and the left and right posterior parietal cortex. Furthermore, we found increased activation in the triangular part of the left inferior frontal gyrus in gamers relative to nongamers when activation during the LDT was compared with activation during the VST. Conclusions: In sum, the expected positive relation between action video game experience and cognitive performance could not be confirmed. Despite their comparable task performance, however, gamers and nongamers exhibited clear-cut differences in brain activation patterns presumably reflecting differences in neural engagement, especially during verbal cognitive tasks.


Asunto(s)
Atención/fisiología , Encéfalo/diagnóstico por imagen , Cognición/fisiología , Imagen por Resonancia Magnética/métodos , Desempeño Psicomotor/fisiología , Conducta Verbal/fisiología , Juegos de Video/psicología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA