Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
MAGMA ; 32(1): 133-145, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30498884

RESUMEN

OBJECTIVE: Perfluorocarbon nanoemulsions (PFCs) tagged with fluorescence dyes have been intensively used to confirm the in vivo 19F magnetic resonance imaging (MRI) localization of PFCs by post mortem histology or flow cytometry. However, only limited data are available on tagged PFCs and the potential dissociation of fluorescence and 19F label after cellular uptake over time. MATERIALS AND METHODS: PFCs were coupled to rhodamine (Rho) or carboxyfluorescein (Cfl) and their fate was analyzed after in vitro uptake by J774, RAW and CHO cells by flow cytometry and 19F MRI. In separate in vivo experiments, the dual-labelled emulsions were intravenously applied into mice and their distribution was monitored in spleen and liver over 24 h. In a final step, time course of fluorescence and 19F signals from injected emulsions were tracked in a local inflammation model making use of a subcutaneous matrigel depot doped with LPS (lipopolysaccharide). RESULTS: Internalization of fluorescence-labelled PFCs was associated with a substantial whitening over 24 h in all macrophage cell lines while the 19F signal remained stable over time. In all experiments, CflPFCs were more susceptible to bleaching than RhoPFCs. After intravenous injection of RhoPFCs, the fluorescence signal in spleen and liver peaked after 30 min and 2 h, respectively, followed by a successive decrease over 24 h, whereas the 19F signal continuously increased during this observation period. Similar results were found in the matrigel/LPS model, where we observed increasing 19F signals in the inflammatory hot spot over time while the fluorescence signal of immune cells isolated from the matrigel depot 24 h after its implantation was only marginally elevated over background levels. This resulted in a massive underestimation of the true PFC deposition in the reticuloendothelial system and at inflammatory hot spots. CONCLUSION: Cellular uptake of fluorescently tagged PFCs leads to a dissociation of the fluorescence and the 19F label signal over time, which critically impacts on interpretation of long-term experiments validated by histology or flow cytometry.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19/métodos , Flúor/química , Fluorocarburos/química , Nanopartículas/química , Animales , Células CHO , Colágeno/química , Medios de Contraste , Cricetulus , Combinación de Medicamentos , Emulsiones , Fluoresceínas/química , Colorantes Fluorescentes/química , Inyecciones Intravenosas , Laminina/química , Lipopolisacáridos/química , Hígado/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Proteoglicanos/química , Rodaminas/química , Bazo/diagnóstico por imagen , Absorción Subcutánea
3.
ACS Nano ; 12(11): 11178-11192, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30372619

RESUMEN

Specific detection of target structures or cells lacking particular surface epitopes still poses a serious problem for all imaging modalities. Here, we demonstrate the capability of synthetic "cargo internalization receptors" (CIRs) for tracking of individual cell populations by 1H/19F magnetic resonance imaging (MRI). To this end, a nanobody for green fluorescent protein (GFP) was used to engineer cell-surface-expressed CIRs which undergo rapid internalization after GFP binding. For 19F MR visibility, the GFP carrier was equipped with "contrast cargo", in that GFP was coupled to perfluorocarbon nanoemulsions (PFCs). To explore the suitability of different uptake mechanisms for this approach, CIRs were constructed by combination of the GFP nanobody and three different cytoplasmic tails that contained individual internalization motifs for endocytosis of the contrast cargo (CIR1-3). Exposure of CIR+ cells to GFP-PFCs resulted in highly specific binding and internalization as confirmed by fluorescence microscopy as well as flow cytometry and enabled visualization by 1H/19F MRI. In particular, expression of CIR2/3 resulted in substantial incorporation of 19F cargo and readily enabled in vivo visualization of GFP-PFC recruitment to transplanted CIR+ cells by 1H/19F MRI in mice. Competition experiments with blood immune cells revealed that CIR+ cells are predominantly loaded with GFP-PFCs even in the presence of cells with strong phagocytotic capacity. Importantly, binding and internalization of GFP-PFCs did not result in the activation of signaling cascades and therefore does not alter cell physiology. Overall, this approach represents a versatile in vivo imaging platform for tracking of individual cell populations by making use of cell-type-specific CIR+ mice.


Asunto(s)
Flúor/química , Proteínas Fluorescentes Verdes/química , Imagen por Resonancia Magnética , Nanopartículas/química , Animales , Células CHO , Células COS , Línea Celular , Chlorocebus aethiops , Cricetulus , Humanos
4.
Biophys J ; 115(8): 1509-1517, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30266319

RESUMEN

Lipid asymmetries between the outer and inner leaflet of the lipid bilayer exist in nearly all biological membranes. Although living cells spend great effort to adjust and maintain these asymmetries, little is known about the biophysical phenomena within asymmetric membranes and their role in cellular function. One reason for this lack of insight into such a fundamental membrane property is the fact that the majority of model-membrane studies have been performed on symmetric membranes. Our aim is to overcome this problem by employing a targeted, enzymatic reaction to prepare asymmetric liposomes with phosphatidylserine (PS) primarily in the inner leaflet. To achieve this goal, we use a recombinant version of a water soluble PS decarboxylase from Plasmodium knowlesi, which selectively decarboxylates PS in the outer leaflet, converting it to phosphatidylethanolamine. The extent of decarboxylation is quantified using high-performance thin-layer chromatography, and the local concentration of anionic PS in the outer leaflet is monitored in terms of the ζ potential. Starting, for example, with 21 mol % 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine sodium salt, the assay leads to liposomes with 21 mol % in the inner and 6 mol % PS in the outer leaflet. This asymmetry persists virtually unchanged for at least 4 days at 20°C and at least 2 days at 40°C. The use of a highly specific enzyme carries the advantage that a minor component such as PS can be adjusted without affecting or being affected by the other lipid species present in the model membrane. The phenomena governing the residual outside PS content are addressed but warrant further study.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carboxiliasas/metabolismo , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Fosfatidilserinas/metabolismo , Plasmodium knowlesi/enzimología , Membrana Celular/química , Liposomas/metabolismo , Fosfatidiletanolaminas/metabolismo
5.
Front Immunol ; 9: 1358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967610

RESUMEN

Secretion of extracellular vesicles (EVs) is a ubiquitous mechanism of intercellular communication based on the exchange of effector molecules, such as growth factors, cytokines, and nucleic acids. Recent studies identified tumor-derived EVs as central players in tumor progression and the establishment of the tumor microenvironment (TME). However, studies on EVs from classical Hodgkin lymphoma (cHL) are limited. The growth of malignant Hodgkin and Reed-Sternberg (HRS) cells depends on the TME, which is actively shaped by a complex interaction of HRS cells and stromal cells, such as fibroblasts and immune cells. HRS cells secrete cytokines and angiogenic factors thus recruiting and inducing the proliferation of surrounding cells to finally deploy an immunosuppressive TME. In this study, we aimed to investigate the role of tumor cell-derived EVs within this complex scenario. We observed that EVs collected from Hodgkin lymphoma (HL) cells were internalized by fibroblasts and triggered their migration capacity. EV-treated fibroblasts were characterized by an inflammatory phenotype and an upregulation of alpha-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts. Analysis of the secretome of EV-treated fibroblast revealed an enhanced release of pro-inflammatory cytokines (e.g., IL-1α, IL-6, and TNF-α), growth factors (G-CSF and GM-CSF), and pro-angiogenic factors such as VEGF. These soluble factors are known to promote HL progression. In line, ingenuity pathway analysis identified inflammatory pathways, including TNF-α/NF-κB-signaling, as key factors directing the EV-dependent phenotype changes in fibroblasts. Confirming the in vitro data, we demonstrated that EVs promote α-SMA expression in fibroblasts and the expression of proangiogenic factors using a xenograft HL model. Collectively, we demonstrate that HL EVs alter the phenotype of fibroblasts to support tumor growth, and thus shed light on the role of EVs for the establishment of the tumor-promoting TME in HL.

6.
Int J Pharm ; 530(1-2): 79-88, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28733242

RESUMEN

The development of nanosuspensions of poorly soluble APIs takes a lot of time and high amount of active material is needed. In this publication the use of dual centrifugation (DC) for an effective and rapid API-nanomilling is described for the first time. DC differs from normal centrifugation by an additional rotation of the samples during centrifugation, resulting in a very fast and powerful movement of the samples inside the vials, which - in combination with milling beads - result in effective milling. DC-nanomilling was compared to conventional wet ball milling and results in same or even smaller particle sizes. Also drug concentrations up to 40% can be processed. The process is fast (typical 90min) and the temperature can be controlled. DC-nanomilling appears to be very gentle, experiments showed no change of the crystal structure during milling. Since batch sizes are very small (100-1000mg) and since 40 sample vials can be processed in parallel, DC is ideal for the screening of suitable polymer/surfactant combinations. Fenofibrate was used to investigate DC-nanomilling for formulation screening by applying a DoE-approach. The presented data also show that the results of DC-nanomilling experiments are highly comparable to the results obtained by common agitator mills.


Asunto(s)
Centrifugación , Composición de Medicamentos/métodos , Nanotecnología , Química Farmacéutica , Nanopartículas , Tamaño de la Partícula , Solubilidad , Suspensiones
7.
Eur J Pharm Sci ; 108: 13-22, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27590127

RESUMEN

The efflux transporter P-glycoprotein (P-gp) significantly modulates drug transport across the intestinal mucosa, strongly reducing the systemic absorption of various active pharmaceutical ingredients. P-gp inhibitors could serve as helpful tools to enhance the oral bioavailability of those substances. As a membrane-associated protein P-gp is surrounded and influenced by phospholipids. Some synthetic phospholipids have been found to strongly reduce P-gp's activity. In this study two representative phospholipids, 1,2-dioctanoyl-sn-glycero-3-phosphocholine (8:0 PC) and 1,2-didecanoyl-sn-glycero-3-phosphocholine (10:0 PC), were compared with Tween® 80 and Cremophor® EL, both commonly used surfactants with P-gp inhibitory properties. Their influence on the cellular transport of the P-gp substrate rhodamine 123 (RH123) was examined using Caco-2 cell layers. In addition, fluorescence anisotropy measurements were performed in order to investigate their effect on membrane fluidity. Finally, we compared the phospholipids with Tween® 80 and the competitive P-gp inhibitor verapamil in an in vivo study, testing their effects on the oral bioavailability of the P-gp substrate drug ritonavir. Both phospholipids not only led to the strongest absorption of RH123, but a permeability enhancing effect was detected in addition to the P-gp inhibition. Their effects on membrane fluidity were not consistent with their P-gp inhibiting effects, and therefore suggested a more complex mode of action. Both phospholipids significantly increased the area under the ritonavir plasma level curve (AUC) within 150min by more than tenfold, but were inferior to Tween® 80, which showed superior solubilizing effects. Finally, these phospholipids represent a novel substance class showing a high permeabilization potential for P-gp substrates. Because of their physiological structure and intestinal degradability, good tolerability without systemic absorption is expected. Formulating P-gp substrates with an originally low oral bioavailability is a difficult task, requiring concerted interplay of all excipients. P-gp inhibiting phospholipids offer a new tool to help cope with these challenges.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Fosfolípidos/farmacología , Ritonavir/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Sistemas de Liberación de Medicamentos , Humanos , Absorción Intestinal , Masculino , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacología , Fosfolípidos/química , Polisorbatos/química , Polisorbatos/farmacología , Ratas Wistar , Rodamina 123/química , Tensoactivos/química , Tensoactivos/farmacología , Verapamilo/química , Verapamilo/farmacología
8.
Oncoimmunology ; 5(10): e1219827, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853642

RESUMEN

Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5'-triphosphate-RNA (3pRNA) triggers antitumor immunity predominantly via NK cell activation and direct apoptosis induction in tumor cells. However, how NK cells are mobilized to attack the tumor cells remains elusive. Here, we show that RIG-I activation induced the secretion of extracellular vesicles (EVs) from melanoma cells, which by themselves revealed antitumor activity in vitro and in vivo. RIG-I-induced EVs from melanoma cells exhibited an increased expression of the NKp30-ligand (BAG6, BAT3) on their surface triggering NK cell-mediated lysis of melanoma cells via activation of the cytotoxicity NK cell-receptor NKp30. Moreover, systemic administration of RIG-I-induced melanoma-EVs showed a potent antitumor activity in a melanoma mouse model in vivo. In conclusion, our data establish a new RIG-I-dependent pathway leading to NK cell-mediated tumor cell killing.

9.
Biophys J ; 111(8): 1714-1723, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760358

RESUMEN

The interaction of liposomal membranes composed of soybean phosphatidylcholine with the bile salts (BSs) cholate (Ch), glycocholate (GC), chenodeoxycholate (CDC), and glycochenodeoxycholate (GCDC) was studied. The BSs differed with regard to their lipophilicity, pKa values, and the size of their hydrophilic moiety. Their membrane interactions were investigated using Laurdan as a membrane-anchored fluorescent dye. The apparent membrane/water partition coefficient, D, at pH 7.4 was calculated from binding plots and compared with direct binding measurements using ultracentrifugation as a reference. The Laurdan-derived LogD values at pH 7.4 were found to be 2.10 and 2.25 for the trihydroxy BSs, i.e., Ch and GC, and 2.85 and 2.75 for the dihydroxy BSs, i.e., CDC and GCDC, respectively. For the membrane-associated glycine-conjugated GC and GCDC (pKa values of ∼3.9), no differences in the Laurdan spectra of the respective BS were found at pH 6.8, 7.4, and 8.2. Unconjugated Ch and CDC (pKa values of ∼5.0) showed pronounced differences at the three pH values. Furthermore, the kinetics of membrane adsorption and transbilayer movement differed between conjugated and unconjugated BSs as determined with Laurdan-labeled liposomes.


Asunto(s)
2-Naftilamina/análogos & derivados , Ácidos y Sales Biliares/química , Membrana Celular/química , Colorantes Fluorescentes/química , Lauratos/química , Agua/química , 2-Naftilamina/química , Ácidos y Sales Biliares/metabolismo , Membrana Celular/metabolismo , Concentración de Iones de Hidrógeno , Absorción Intestinal , Marcaje Isotópico , Cinética , Liposomas/química , Liposomas/metabolismo , Hígado/metabolismo
10.
J Nanobiotechnology ; 14(1): 57, 2016 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-27401816

RESUMEN

BACKGROUND: Pancreatic cancer is one of the most lethal of human malignancies known to date and shows relative insensitivity towards most of the clinically available therapy regimens. 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), a novel synthetic curcumin analog, has shown promising in vitro therapeutic efficacy in various human cancer cells, but insufficient water solubility and systemic bioavailability limit its clinical application. Here, we describe nano-encapsulation of EF24 into pegylated liposomes (Lipo-EF24) and evaluation of these particles in preclinical in vitro and in vivo model systems of pancreatic cancer. RESULTS: Transmission electron microscopy and size distribution studies by dynamic light scattering confirmed intact spherical morphology of the formed liposomes with an average diameter of less than 150 nm. In vitro, treatment with Lipo-EF24 induced growth inhibition and apoptosis in MIAPaCa and Pa03C pancreatic cancer cells as assessed by using cell viability and proliferation assays, replating and soft agar clonogenicity assays as well as western blot analyses. Lipo-EF24 potently suppressed NF-kappaB nuclear translocation by inhibiting phosphorylation and subsequent degradation of its inhibitor I-kappa-B-alpha. In vivo, synergistic tumor growth inhibition was observed in MIAPaCa xenografts when Lipo-EF24 was given in combination with the standard-of-care cytotoxic agent gemcitabine. In line with in vitro observations, western blot analysis revealed decreased phosphorylation of I-kappa-B-alpha in excised Lipo-EF24-treated xenograft tumor tissues. CONCLUSION: Due to its promising therapeutic efficacy and favorable toxicity profile Lipo-EF24 might be a promising starting point for development of future combinatorial therapeutic regimens against pancreatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bencilideno/farmacología , Desoxicitidina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Liposomas/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Piperidonas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Compuestos de Bencilideno/química , Compuestos de Bencilideno/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacología , Progresión de la Enfermedad , Composición de Medicamentos , Quimioterapia Combinada , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inyecciones Subcutáneas , Liposomas/química , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación/efectos de los fármacos , Piperidonas/química , Piperidonas/farmacocinética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
11.
Stem Cells Transl Med ; 5(5): 639-50, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27057005

RESUMEN

UNLABELLED: Epicardium-derived cells (EPDCs) cover the heart surface and can function as a source of both progenitor cells and trophic factors for cardiac repair. Currently, EPDCs cannot be conveniently labeled in vivo to permit imaging and cell tracking. EPDCs formed after myocardial infarction (MI) preferentially take up a perfluorocarbon-containing nanoemulsion (PFC-NE; 130 ± 32 nm) injected 3 days after injury, as measured by (19)F-magnetic resonance imaging ((19)F-MRI). Flow cytometry, immune electron microscopy, and green fluorescent protein (GFP)-transgenic rats (only immune cells, but not epicardial cells, are GFP(+)) demonstrated that PFC-containing EPDCs are nonhematopoietic (CD45(-)/CD11b(-)) but stain positive for markers of mesenchymal stem cells such as platelet-derived growth factor receptor α (PDGFR-α) CD73, CD105, and CD90. When rhodamine-coupled PFC-NE was used, we found that ρ(+) vessel-like structures formed within the infarcted myocardium, comprising approximately 10% of all large vessels positive for smooth muscle actin (SM-actin). The epicardial cell layer, positive for Wilms' tumor 1 (WT-1), PDGFR-α, or KI-67, was shown to be well capillarized (293 ± 78 capillaries per mm(2)), including fenestrated endothelium. Freshly isolated EPDCs were positive for WT-1, GATA-4, KI-67, and FLK-1 (75%), PDGFR-α (50%), and SM-actin (28%) and also exhibited a high capacity for nanoparticle and cell debris uptake. This study demonstrates that EPDCs formed after MI display strong endocytic activity to take up i.v.-injected labeled nanoemulsions. This feature permitted in vivo labeling and tracking of EPDCs, demonstrating their role in myo- and vasculogenesis. The newly discovered endocytic activity permits in vivo imaging of EPDCs with (19)F-MRI and may be used for the liposomal delivery of substances to further study their reparative potential. SIGNIFICANCE: The present study reports that epicardium-derived cells (EPDCs) formed after myocardial infarction can specifically endocytose nanoparticles in vivo and in vitro. This novel feature permitted in vivo targeting of EPDCs with either a perfluorocarbon-containing or rhodamine-conjugated nanoemulsion to track migration and fate decision of EPDC with (19)F-magnetic resonance imaging and fluorescence microscopy. The liposomal nanoemulsions used in the present study may be useful in the future as a nanomedical device for the delivery of substances to direct cell fate of EPDCs.


Asunto(s)
Linaje de la Célula , Rastreo Celular/métodos , Infarto del Miocardio/patología , Pericardio/patología , Fagocitos/patología , Fagocitosis , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Medios de Contraste/metabolismo , Modelos Animales de Enfermedad , Emulsiones , Citometría de Flujo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Liposomas , Imagen por Resonancia Magnética , Masculino , Microscopía Inmunoelectrónica , Infarto del Miocardio/metabolismo , Nanopartículas , Pericardio/metabolismo , Fagocitos/metabolismo , Fenotipo , Ratas Transgénicas , Ratas Wistar , Factores de Tiempo
12.
Eur J Pharm Biopharm ; 103: 51-61, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27016212

RESUMEN

Liposomes consist of a hydrophilic core surrounded by a phospholipid (PL) bilayer. In human blood, the half-life of such artificial vesicles is limited. To prolong their stability in the circulation, liposomal bilayers can be modified by inserting poly(ethylene glycol) (PEG) molecules using either PL or sterols as membrane anchors. This establishes a hydrophilic steric barrier, reducing the adsorption of serum proteins, recognition and elimination by cells of the immune system. In addition, targeting ligands (such as antibodies) are frequently coupled to the distal end of the PEG chains to direct the vesicles (then called 'immuno-liposomes') to specific cell types, such as tumor cells. To our knowledge, experiments on the stability of ligand anchoring have so far only been conducted with PL-based PEGs and not with sterol-based PEGs after insertion via the sterol-based post-insertion technique (SPIT). Therefore, our study examines the insertion stability of PEG-cholesteryl ester (Chol-PEG) molecules with PEG chains of 1000, 1500 and 2000Da molecular mass which have been inserted into the membranes of liposomes using SPIT. For this study we used different acceptor media and multiple analytical techniques, including pulsed-field-gradient nuclear magnetic resonance (PFG-NMR), free-flow electrophoresis, size exclusion chromatography and ultracentrifugation. The obtained data consistently showed that a higher molar mass of PEG chains positively correlates with higher release from the liposome membranes. Furthermore, we could detect and quantify the migration of Chol-PEG molecules from radioactively double-labeled surface-modified liposomes to negatively charged acceptor liposomes via free-flow electrophoresis. Insertion of Chol-PEG molecules into the membrane of preformed liposomes using SPIT is an essential step for the functionalization of liposomes with the aim of specific targeting. For the first time, we present a kinetic analysis of this insertion process using PFG-NMR, showing that insertion into the liposomal membranes takes place within 90s for Chol-PEG1000 molecules.


Asunto(s)
Colesterol/química , Liposomas , Membranas Artificiales , Polietilenglicoles/química , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Ultracentrifugación
13.
J Cell Biol ; 210(6): 951-60, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26347140

RESUMEN

Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/biosíntesis , Ácidos Fosfatidicos/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Liposomas , Ácido Litocólico/farmacología , Proteínas de la Membrana/genética , Membranas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
14.
J Phys Chem B ; 119(37): 12212-23, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26340300

RESUMEN

The spontaneous formation of lipid vesicles, in particular fatty acid vesicles, is considered an important physical process at the roots of cellular life. It has been demonstrated previously that the addition of fatty acid micelles to preformed vesicles induces vesicle self-reproduction by a growth-division mechanism. Despite multiple experimental efforts, it remains unresolved how vesicles rearrange upon the addition of fresh membrane-forming compounds, and whether solutes that are initially encapsulated inside the mother vesicles are evenly redistributed among the daughter ones. Here we investigate the growth-division of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles, which, following the addition of oleate micelles, form mixed oleate/POPC vesicles. Our approach is based on free-flow electrophoresis (FFE) and cryogenic transmission electronmicroscopy (cryo-TEM). Two new features emerge from this study. FFE analysis unexpectedly reveals that the uptake of oleate micelles by POPC vesicles follows two different pathways depending on the micelles/vesicles ratio. At low oleate molar fractions (<0.35), plain incorporation of oleate into pre-existing POPC vesicles is our dominant observation. In contrast, oleate-rich and oleate-poor daughter vesicles are generated from parent POPC vesicles when the oleate molar fraction exceeds 0.35. Cryo-TEM reveals that when ferritin-filled vesicles grow and divide, some vesicles contain ferritin at increased concentrations, others are empty. Intriguingly, in some cases, ferritin appears to be highly concentrated inside the vesicles. These observations imply a specific redistribution (partitioning) of encapsulated solutes among nascent vesicles during the growth-division steps. We have interpreted our observations by assuming that freshly added oleate molecules are taken-up preferentially (cooperatively) by oleate-rich membrane regions that form spontaneously in POPC/oleate vesicles when a certain threshold (oleate molar fraction ca. 0.35) is surpassed. The proposed cooperative mechanism could be based on differential microscopic constants for oleate/oleic acid dynamics in oleate-rich and oleate-poor membrane regions, which eventually generate populations of oleate-rich and oleate-poor vesicles.


Asunto(s)
Simulación por Computador , Liposomas/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Agua/química , Microscopía por Crioelectrón , Fluidez de la Membrana , Micelas
15.
PLoS One ; 10(6): e0130674, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26098661

RESUMEN

Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion.


Asunto(s)
Emulsiones/química , Fluorocarburos/química , Nanopartículas/química , Dispersión Dinámica de Luz/métodos , Imagen por Resonancia Magnética/métodos , Microscopía Electrónica de Transmisión/métodos , Tamaño de la Partícula
16.
Circulation ; 131(16): 1405-14, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25700177

RESUMEN

BACKGROUND: Noninvasive detection of deep venous thrombi and subsequent pulmonary thromboembolism is a serious medical challenge, since both incidences are difficult to identify by conventional ultrasound techniques. METHODS AND RESULTS: Here, we report a novel technique for the sensitive and specific identification of developing thrombi using background-free 19F magnetic resonance imaging, together with α2-antiplasmin peptide (α2AP)-targeted perfluorocarbon nanoemulsions (PFCs) as contrast agent, which is cross-linked to fibrin by active factor XIII. Ligand functionality was ensured by mild coupling conditions using the sterol-based postinsertion technique. Developing thrombi with a diameter<0.8 mm could be visualized unequivocally in the murine inferior vena cava as hot spots in vivo by simultaneous acquisition of anatomic matching 1H and 19F magnetic resonance images at 9.4 T with both excellent signal-to-noise and contrast-to-noise ratios (71±22 and 17±5, respectively). Furthermore, α2AP-PFCs could be successfully applied for the diagnosis of experimentally induced pulmonary thromboembolism. In line with the reported half-life of factor XIIIa, application of α2AP-PFCs>60 minutes after thrombus induction no longer resulted in detectable 19F magnetic resonance imaging signals. Corresponding results were obtained in ex vivo generated human clots. Thus, α2AP-PFCs can visualize freshly developed thrombi that might still be susceptible to pharmacological intervention. CONCLUSIONS: Our results demonstrate that 1H/19F magnetic resonance imaging, together with α2AP-PFCs, is a sensitive, noninvasive technique for the diagnosis of acute deep venous thrombi and pulmonary thromboemboli. Furthermore, ligand coupling by the sterol-based postinsertion technique represents a unique platform for the specific targeting of PFCs for in vivo 19F magnetic resonance imaging.


Asunto(s)
Colesterol/análogos & derivados , Medios de Contraste , Imagen por Resonancia Magnética con Fluor-19/métodos , Fluorocarburos , Polietilenglicoles , Embolia Pulmonar/diagnóstico , Trombosis de la Vena/diagnóstico , alfa 2-Antiplasmina/análogos & derivados , Animales , Colesterol/farmacocinética , Medios de Contraste/farmacocinética , Portadores de Fármacos , Diagnóstico Precoz , Emulsiones/farmacocinética , Factor XIIIa/metabolismo , Flúor/farmacocinética , Fluorocarburos/farmacocinética , Humanos , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/fisiología , Nanosferas , Polietilenglicoles/farmacocinética , Sensibilidad y Especificidad , Relación Señal-Ruido , Distribución Tisular , Vena Cava Inferior , alfa 2-Antiplasmina/farmacocinética
17.
Nat Mater ; 14(1): 125-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362355

RESUMEN

Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.


Asunto(s)
Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Orgánulos/química , Orgánulos/genética , Orgánulos/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Eur J Pharm Biopharm ; 88(3): 807-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25301294

RESUMEN

The aim of the present study was to develop film-coated tablets which release a minor amount of the active pharmaceutical ingredient (API) into the stomach and small intestine, yet show a sharp increase of drug release in the colon. Tablets containing the model drug Diclofenac-Na, microcrystalline cellulose as a filler (MT), as well as tablets consisting of Ludiflash® (LT), both were used as tablet cores, respectively. Either chitosan (CHI) alone or different ratios of chitosan and Kollicoat® Smartseal 30 D (KCSS) were applied onto these cores. The resulting film-coated tablets were analyzed for swelling, drug dissolution and stability. In order to clarify whether the colon release is mainly enzyme-driven or pressure-controlled, the coated tablets were both tested in the colon microflora test (CMT), which simulates the enzyme environment within the colon, and using a bio-relevant dissolution apparatus mimicking the intraluminal pressures and stress conditions present in the gastrointestinal tract (GIT). CHI/KCSS (25:75) coated LTs showed a pressure-controlled site-specific drug release in the large intestine, while remaining intact in the upper GIT. CHI as well as CHI/KCSS (25:75) applied onto MTs, remained stable during the entire simulated bio-relevant dissolution transit of the GIT, but showed enzymatically controlled colon targeting in the CMT. These results could be confirmed for CHI/KCSS (25:75) film-coated MTs top-coated with an additional hydroxypropylmethylcellulose (HPMC) layer and an Eudragit L 30 D-55 (EUL) layer to avoid the dissolution in the fasting stomach.


Asunto(s)
Quitosano/administración & dosificación , Colon/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Polivinilos/administración & dosificación , Animales , Quitosano/química , Quitosano/metabolismo , Colon/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Metacrilatos/administración & dosificación , Metacrilatos/química , Metacrilatos/metabolismo , Polímeros/administración & dosificación , Polímeros/química , Polímeros/metabolismo , Polivinilos/química , Polivinilos/metabolismo , Porcinos , Comprimidos Recubiertos
19.
Int J Nanomedicine ; 9: 3583-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25114527

RESUMEN

The potential of boron-containing lipids with three different structures, which were intended for use in boron neutron capture therapy, was investigated. All three types of boron lipids contained the anionic dodecaborate cluster as the headgroup. Their effects on two different tumor models in mice following intravenous injection were tested; for this, liposomes with boron lipid, distearoyl phosphatidylcholine, and cholesterol as helper lipids, and containing a polyethylene glycol lipid for steric protection, were administered intravenously into tumor-bearing mice (C3H mice for SCCVII squamous cell carcinoma and BALB/c mice for CT26/WT colon carcinoma). With the exception of one lipid (B-THF-14), the lipids were well tolerated, and no other animal was lost due to systemic toxicity. The lipid which led to death was not found to be much more toxic in cell culture than the other boron lipids. All of the lipids that were well tolerated showed hemorrhage in both tumor models within a few hours after administration. The hemorrhage could be seen by in vivo magnetic resonance and histology, and was found to occur within a few hours. The degree of hemorrhage depended on the amount of boron administered and on the tumor model. The observed unwanted effect of the lipids precludes their use in boron neutron capture therapy.


Asunto(s)
Compuestos de Boro/toxicidad , Terapia por Captura de Neutrón de Boro/efectos adversos , Hemorragia/inducido químicamente , Liposomas/toxicidad , Neoplasias/fisiopatología , Neoplasias/radioterapia , Animales , Compuestos de Boro/química , Compuestos de Boro/farmacocinética , Terapia por Captura de Neutrón de Boro/métodos , Hemorragia/patología , Histocitoquímica , Lípidos/química , Lípidos/farmacocinética , Lípidos/toxicidad , Liposomas/química , Liposomas/farmacocinética , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Neoplasias/química , Neoplasias/patología , Distribución Tisular
20.
Eur J Pharm Biopharm ; 87(3): 559-69, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24681296

RESUMEN

Since pharmacokinetic and pharmacodynamic activities of drugs are often related to their interactions with biomembranes, it is of high interest to establish an approach for the characterization of these interactions at the molecular level. For the present study, beta-blockers (oxprenolol, propranolol, and acebutolol) were selected due to their well described nonspecific membrane effects (NME). Their interactions with model lipid membranes composed of palmitoyloleoylphosphatidylcholine (POPC) were studied using Time-Dependent Fluorescence Shift (TDFS) and Generalized Polarization (GP) as well as molecular dynamics (MD) simulations. Liposomal vesicles were labeled with fluorescent membrane polarity probes (Laurdan, Prodan, and Dtmac). Increasing beta-blocker concentrations (0-10 mM for acebutolol and oxprenolol, and 0-1.5 mM for propranolol) significantly rigidifies the lipid bilayer at the glycerol and headgroup level, which was detected in the steady-state and in the time-resolved fluorescence data. The effects of propranolol were considerably stronger than those of the two other beta-blockers. The addition of fluorescent probes precisely located at different levels within the lipid bilayer revealed the insertion of the beta-blockers into the POPC bilayer at the glycerol backbone level, which was further confirmed by MD simulations in the case of propranolol.


Asunto(s)
Acebutolol/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Oxprenolol/metabolismo , Fosfatidilcolinas/metabolismo , Propranolol/metabolismo , Fluorescencia , Colorantes Fluorescentes/metabolismo , Glicerol/metabolismo , Liposomas/metabolismo , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...