Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528182

RESUMEN

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Asunto(s)
MicroARNs , Esquizofrenia , Animales , Humanos , Ratones , Microglía/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Esquizofrenia/genética
2.
Acta Neuropathol Commun ; 5(1): 35, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449707

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrPSc). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca2+) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca2+ responsive genes in sCJD brain tissue, accompanied by two Ca2+-dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrPSc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Calpaína/metabolismo , Catepsinas/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Homeostasis/fisiología , Animales , Encéfalo/patología , Cationes Bivalentes/metabolismo , Células Cultivadas , Síndrome de Creutzfeldt-Jakob/patología , Modelos Animales de Enfermedad , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Mesocricetus , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Proteínas PrPSc/metabolismo , Ratas Wistar , Proteínas Recombinantes/metabolismo , Ovinos
3.
Nat Neurosci ; 19(1): 102-10, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26656643

RESUMEN

The ability to form memories is a prerequisite for an organism's behavioral adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes in two distinct mouse brain regions, two cell types and three time points before and after contextual learning. We found that histone modifications predominantly changed during memory acquisition and correlated surprisingly little with changes in gene expression. Although long-lasting changes were almost exclusive to neurons, learning-related histone modification and DNA methylation changes also occurred in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning. Finally, our data provide evidence for a molecular framework of memory acquisition and maintenance, wherein DNA methylation could alter the expression and splicing of genes involved in functional plasticity and synaptic wiring.


Asunto(s)
Conducta Animal/fisiología , Región CA1 Hipocampal/metabolismo , Cromatina/química , Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Expresión Génica/fisiología , Giro del Cíngulo/metabolismo , Histonas/metabolismo , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Plasticidad Neuronal/fisiología , Animales , Condicionamiento Psicológico , Metilación de ADN/genética , Epigénesis Genética/genética , Miedo , Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...