Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766222

RESUMEN

Proliferating cancer cells actively utilize anabolic processes for biomass production, including de novo biosynthesis of amino acids, nucleotides, and fatty acids. The key enzyme of the fatty acid biosynthesis pathway, fatty acid synthase (FASN), is widely recognized as a promising therapeutic target in cancer and other health conditions 1,2 . Here, we establish a metabolic signature of FASN inhibition using a panel of pharmacological inhibitors (GSK2194069, TVB-2640, TVB-3166, C75, cerulenin, and Fasnall). We find that the activity of commonly used FASN inhibitors is inconsistent with the metabolic signature of FASN inhibition (accumulation of malonate, succinate, malonyl coenzyme A, succinyl coenzyme A, and other metabolic perturbations). Moreover, we show that one of these putative FASN inhibitors, Fasnall, is a respiratory Complex I inhibitor that mimics FASN inhibition through NADH accumulation and consequent depletion of the tricarboxylic acid cycle metabolites. We demonstrate that Fasnall impairs tumor growth in several oxidative phosphorylation-dependent cancer models, including combination therapy-resistant melanoma patient-derived xenografts. Fasnall administration does not reproduce neurological side effects in mice reported for other Complex I inhibitors 3,4 . Our results have significant implications for understanding the FASN role in human health and disease and provide evidence of therapeutic potential for Complex I inhibitors with fast systemic clearance. Our findings also highlight the continuing need for validation of small molecule inhibitors to distinguish high-quality chemical probes and to expand the understanding of their application.

2.
Nat Cancer ; 4(10): 1491-1507, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37723305

RESUMEN

Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Acetilcoenzima A/metabolismo , Línea Celular Tumoral , Acetatos/farmacología , Acetatos/uso terapéutico , Acetatos/metabolismo , Linfocitos T/metabolismo , Factores Inmunológicos , Microambiente Tumoral
3.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37444561

RESUMEN

Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.

4.
Cancer Med ; 12(10): 11760-11772, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36916687

RESUMEN

BACKGROUND: Despite similar incidence rates among Black and White women, breast cancer mortality rates are 40% higher among Black women. More than half of the racial difference in breast cancer mortality can be attributed to triple negative breast cancer (TNBC), an aggressive subtype of invasive breast cancer that disproportionately affects Black women. Recent research has implicated neighborhood conditions in the etiology of TNBC. This study investigated the relationship between cumulative neighborhood-level exposures and TNBC risk. METHODS: This single-institution retrospective study was conducted on a cohort of 3316 breast cancer cases from New Castle County, Delaware (from 2012 to 2020), an area of the country with elevated TNBC rates. Cases were stratified into TNBC and "Non-TNBC" diagnosis and geocoded by residential address. Neighborhood exposures included census tract-level measures of unhealthy alcohol use, metabolic dysfunction, breastfeeding, and environmental hazards. An overall cumulative risk score was calculated based on tract-level exposures. RESULTS: Univariate analyses showed each tract-level exposure was associated with greater TNBC odds. In multivariate analyses that controlled for patient-level race and age, tract-level exposures were not associated with TNBC odds. However, in a second multivariate model that included patient-level variables and considered tract-level risk factors as a cumulative exposure risk score, each one unit increase in cumulative exposure was significantly associated with a 10% increase in TNBC odds. Higher cumulative exposure risk scores were found in census tracts with relatively high proportions of Black residents. CONCLUSIONS: Cumulative exposure to neighborhood-level risk factors that disproportionately affect Black communities was associated with greater TNBC risk.


Asunto(s)
Población Negra , Características de la Residencia , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Población Negra/estadística & datos numéricos , Estudios Retrospectivos , Factores de Riesgo , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/etiología , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Cancer Immunol Res ; 11(3): 278-289, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548516

RESUMEN

Pathologically activated neutrophils (PMN) with immunosuppressive activity, which are termed myeloid-derived suppressor cells (PMN-MDSC), play a critical role in regulating tumor progression. These cells have been implicated in promoting tumor metastases by contributing to premetastatic niche formation. This effect was facilitated by enhanced spontaneous migration of PMN from bone marrow to the premetastatic niches during the early-stage of cancer development. The molecular mechanisms underpinning this phenomenon remained unclear. In this study, we found that syntaphilin (SNPH), a cytoskeletal protein previously known for anchoring mitochondria to the microtubule in neurons and tumor cells, could regulate migration of PMN. Expression of SNPH was decreased in PMN from tumor-bearing mice and patients with cancer as compared with PMN from tumor-free mice and healthy donors, respectively. In Snph-knockout (SNPH-KO) mice, spontaneous migration of PMN was increased and the mice showed increased metastasis. Mechanistically, in SNPH-KO mice, the speed and distance travelled by mitochondria in PMN was increased, rates of oxidative phosphorylation and glycolysis were elevated, and generation of adenosine was increased. Thus, our study reveals a molecular mechanism regulating increased migratory activity of PMN during cancer progression and suggests a novel therapeutic targeting opportunity.


Asunto(s)
Proteínas de la Membrana , Células Supresoras de Origen Mieloide , Neoplasias , Proteínas del Tejido Nervioso , Animales , Ratones , Movimiento Celular , Proteínas de la Membrana/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/patología , Neutrófilos/metabolismo
6.
Breast Cancer Res ; 24(1): 37, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650633

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive subtype of invasive breast cancer that disproportionately affects Black women and contributes to racial disparities in breast cancer mortality. Prior research has suggested that neighborhood effects may contribute to this disparity beyond individual risk factors. METHODS: The sample included a cohort of 3316 breast cancer cases diagnosed between 2012 and 2020 in New Castle County, Delaware, a geographic region of the US with elevated rates of TNBC. Multilevel methods and geospatial mapping evaluated whether the race, income, and race/income versions of the neighborhood Index of Concentration at the Extremes (ICE) metric could efficiently identify census tracts (CT) with higher odds of TNBC relative to other forms of invasive breast cancer. Odds ratios (OR) and 95% confidence intervals (CI) were reported; p-values < 0.05 were significant. Additional analyses examined area-level differences in exposure to metabolic risk factors, including unhealthy alcohol use and obesity. RESULTS: The ICE-Race, -Income-, and Race/Income metrics were each associated with greater census tract odds of TNBC on a bivariate basis. However, only ICE-Race was significantly associated with higher odds of TNBC after adjustment for patient-level age and race (most disadvantaged CT: OR = 2.09; 95% CI 1.40-3.13), providing support for neighborhood effects. Higher counts of alcohol and fast-food retailers, and correspondingly higher rates of unhealthy alcohol use and obesity, were observed in CTs that were classified into the most disadvantaged ICE-Race quintile and had the highest odds of TNBC. CONCLUSION: The use of ICE can facilitate the monitoring of cancer inequities and advance the study of racial disparities in breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Mama , Femenino , Humanos , Obesidad , Características de la Residencia , Factores Socioeconómicos , Neoplasias de la Mama Triple Negativas/epidemiología
7.
Cell Metab ; 34(5): 775-782.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508111

RESUMEN

The folic acid cycle mediates the transfer of one-carbon (1C) units to support nucleotide biosynthesis. While the importance of serine as a mitochondrial and cytosolic donor of folate-mediated 1C units in cancer cells has been thoroughly investigated, a potential role of glycine oxidation remains unclear. We developed an approach for quantifying mitochondrial glycine cleavage system (GCS) flux by combining stable and radioactive isotope tracing with computational flux decomposition. We find high GCS flux in hepatocellular carcinoma (HCC), supporting nucleotide biosynthesis. Surprisingly, other than supplying 1C units, we found that GCS is important for maintaining protein lipoylation and mitochondrial activity. Genetic silencing of glycine decarboxylase inhibits the lipoylation and activity of pyruvate dehydrogenase and impairs tumor growth, suggesting a novel drug target for HCC. Considering the physiological role of liver glycine cleavage, our results support the notion that tissue of origin plays an important role in tumor-specific metabolic rewiring.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ácido Fólico/metabolismo , Glicina/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo , Humanos , Lipoilación/genética , Proteínas Mitocondriales/metabolismo , Nucleótidos/metabolismo
8.
Oncogene ; 41(8): 1129-1139, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35046531

RESUMEN

Effective therapeutic options are still lacking for uveal melanoma (UM) patients who develop metastasis. Metastatic traits of UM are linked to BRCA1-associated protein 1 (BAP1) mutations. Cell metabolism is re-programmed in UM with BAP1 mutant UM, but the underlying mechanisms and opportunities for therapeutic intervention remain unclear. BAP1 mutant UM tumors have an elevated glycolytic gene expression signature, with increased expression of pyruvate dehydrogenase (PDH) complex and PDH kinase (PDHK1). Furthermore, BAP1 mutant UM cells showed higher levels of phosphorylated PDHK1 and PDH that was associated with an upregulated glycolytic profile compared to BAP1 wild-type UM cells. Suppressing PDHK1-PDH phosphorylation decreased glycolytic capacity and cell growth, and induced cell cycle arrest of BAP1 mutant UM cells. Our results suggest that PDHK1-PDH phosphorylation is a causative factor of glycolytic phenotypes found in BAP1 mutant UM and propose a therapeutic opportunity for BAP1 mutant UM patients.


Asunto(s)
Melanoma , Neoplasias de la Úvea
9.
Cancer Epidemiol Biomarkers Prev ; 31(1): 108-116, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34737210

RESUMEN

BACKGROUND: The NCI requires designated cancer centers to conduct catchment area assessments to guide cancer control and prevention efforts designed to reduce the local cancer burden. We extended and adapted this approach to a community cancer center catchment area with elevated rates of triple-negative breast cancer (TNBC). METHODS: Cancer registry data for 462 TNBC and 2,987 "Not-TNBC" cases diagnosed between 2012 and 2020 at the Helen F. Graham Cancer Center & Research Institute (HFGCCRI), located in New Castle County, Delaware, were geocoded to detect areas of elevated risk (hot spots) and decreased risk (cold spots). Next, electronic health record (EHR) data on obesity and alcohol use disorder (AUD) and catchment area measures of fast-food and alcohol retailers were used to assess for spatial relationships between TNBC hot spots and potentially modifiable risk factors. RESULTS: Two hot and two cold spots were identified for TNBC within the catchment area. The hot spots accounted for 11% of the catchment area but nearly a third of all TNBC cases. Higher rates of unhealthy alcohol use and obesity were observed within the hot spots. CONCLUSIONS: The use of spatial methods to analyze cancer registry and other secondary data sources can inform cancer control and prevention efforts within community cancer center catchment areas, where limited resources can preclude the collection of new primary data. IMPACT: Targeting community outreach and engagement activities to TNBC hot spots offers the potential to reduce the population-level burden of cancer efficiently and equitably.


Asunto(s)
Consumo de Bebidas Alcohólicas/epidemiología , Áreas de Influencia de Salud , Obesidad/epidemiología , Neoplasias de la Mama Triple Negativas/epidemiología , Anciano , Delaware/epidemiología , Femenino , Humanos , Persona de Mediana Edad , Salud Poblacional , Sistema de Registros , Factores de Riesgo
10.
Nat Rev Drug Discov ; 21(2): 141-162, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862480

RESUMEN

One hundred years have passed since Warburg discovered alterations in cancer metabolism, more than 70 years since Sidney Farber introduced anti-folates that transformed the treatment of childhood leukaemia, and 20 years since metabolism was linked to oncogenes. However, progress in targeting cancer metabolism therapeutically in the past decade has been limited. Only a few metabolism-based drugs for cancer have been successfully developed, some of which are in - or en route to - clinical trials. Strategies for targeting the intrinsic metabolism of cancer cells often did not account for the metabolism of non-cancer stromal and immune cells, which have pivotal roles in tumour progression and maintenance. By considering immune cell metabolism and the clinical manifestations of inborn errors of metabolism, it may be possible to isolate undesirable off-tumour, on-target effects of metabolic drugs during their development. Hence, the conceptual framework for drug design must consider the metabolic vulnerabilities of non-cancer cells in the tumour immune microenvironment, as well as those of cancer cells. In this Review, we cover the recent developments, notable milestones and setbacks in targeting cancer metabolism, and discuss the way forward for the field.


Asunto(s)
Metabolismo Energético , Errores Innatos del Metabolismo/fisiopatología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología
11.
J Biol Chem ; 298(1): 101436, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801549

RESUMEN

Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum inositol trisphosphate receptors (IP3Rs) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetic needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293 and HeLa) with stable KOs of all three IP3R isoforms (triple KO [TKO]) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely because of adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.


Asunto(s)
Señalización del Calcio , Calcio , Mitocondrias , Proteínas Mitocondriales , Adenosina Trifosfato/metabolismo , Fenómenos Biológicos , Calcio/metabolismo , Canales de Calcio/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
12.
Nat Cancer ; 2(2): 189-200, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-34085048

RESUMEN

Alterations in components of the SWI/SNF chromatin-remodeling complex occur in ~20% of all human cancers. For example, ARID1A is mutated in up to 62% of clear cell ovarian carcinoma (OCCC), a disease currently lacking effective therapies. Here we show that ARID1A mutation creates a dependence on glutamine metabolism. SWI/SNF represses glutaminase (GLS1) and ARID1A inactivation upregulates GLS1. ARID1A inactivation increases glutamine utilization and metabolism through the tricarboxylic acid cycle to support aspartate synthesis. Indeed, glutaminase inhibitor CB-839 suppresses the growth of ARID1A mutant, but not wildtype, OCCCs in both orthotopic and patient-derived xenografts. In addition, glutaminase inhibitor CB-839 synergizes with immune checkpoint blockade anti-PDL1 antibody in a genetic OCCC mouse model driven by conditional Arid1a inactivation. Our data indicate that pharmacological inhibition of glutaminase alone or in combination with immune checkpoint blockade represents an effective therapeutic strategy for cancers involving alterations in the SWI/SNF complex such as ARID1A mutations.


Asunto(s)
Adenocarcinoma de Células Claras , Neoplasias Ováricas , Adenocarcinoma de Células Claras/tratamiento farmacológico , Animales , Proteínas de Unión al ADN/genética , Femenino , Glutaminasa/genética , Glutamina/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico , Ratones , Proteínas Nucleares/genética , Neoplasias Ováricas/tratamiento farmacológico , Factores de Transcripción/genética
13.
Trends Cancer ; 7(8): 671-681, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127435

RESUMEN

Melanoma is derived from melanocytes located in multiple regions of the body. Cutaneous melanoma (CM) represents the major subgroup, but less-common subtypes including uveal melanoma (UM), mucosal melanoma (MM), and acral melanoma (AM) arise that have distinct genetic profiles. Treatments effective for CM are ineffective in UM, AM, and MM, and patient survival remains poor. As reprogrammed cancer metabolism is associated with tumorigenesis, the underlying mechanisms are well studied and provide therapeutic opportunities in many cancers; however, metabolism is less well studied in rarer melanoma subtypes. We summarize current knowledge of the metabolic alterations in rare melanoma and potential applications of targeting cancer metabolism to improve the therapeutic options available to UM, AM, and MM patients.


Asunto(s)
Melanoma/metabolismo , Redes y Vías Metabólicas/genética , Membrana Mucosa/patología , Enfermedades Raras/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias de la Úvea/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Progresión de la Enfermedad , Humanos , Melanoma/genética , Melanoma/mortalidad , Melanoma/patología , Mutación , Enfermedades Raras/genética , Enfermedades Raras/mortalidad , Enfermedades Raras/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Tasa de Supervivencia , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/mortalidad , Neoplasias de la Úvea/patología
14.
Br J Cancer ; 124(12): 1900-1901, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33767420

RESUMEN

Recent advances in our understanding of tumour heterogeneity alongside studies investigating altered metabolism within transformed tissue have identified metabolic pathways critical to cancer cell survival. Leveraging this information presents a promising new avenue for the generation of cancer-specific therapeutics and improved patient outcomes.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Acetatos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Resultado del Tratamiento
16.
Cancer Res ; 81(5): 1252-1264, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414169

RESUMEN

Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Animales , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Estabilidad de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones Endogámicos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Oncogene ; 40(3): 618-632, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208912

RESUMEN

Cancer cell metabolism is a targetable vulnerability; however, a precise understanding of metabolic heterogeneity is required. Inactivating mutations in BRCA1-associated protein 1 (BAP1) are associated with metastasis in uveal melanoma (UM), the deadliest adult eye cancer. BAP1 functions in UM remain unclear. UM patient sample analysis divided BAP1 mutant UM tumors into two subgroups based on oxidative phosphorylation (OXPHOS) gene expression suggesting metabolic heterogeneity. Consistent with patient data, transcriptomic analysis of BAP1 mutant UM cell lines also showed OXPHOShigh or OXPHOSlow subgroups. Integrated RNA sequencing, metabolomics, and molecular analyses showed that OXPHOShigh BAP1 mutant UM cells utilize glycolytic and nucleotide biosynthesis pathways, whereas OXPHOSlow BAP1 mutant UM cells employ fatty acid oxidation. Furthermore, the two subgroups responded to different classes of metabolic suppressors. Our findings indicate that targeting cancer metabolism is a promising therapeutic option for BAP1 mutant UM; however, tailored approaches may be required due to metabolic heterogeneities.


Asunto(s)
Melanoma/metabolismo , Mutación , Fosforilación Oxidativa , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Neoplasias de la Úvea/metabolismo , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología
18.
Elife ; 92020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170774

RESUMEN

The Pro47Ser variant of p53 (S47) exists in African-descent populations and is associated with increased cancer risk in humans and mice. Due to impaired repression of the cystine importer Slc7a11, S47 cells show increased glutathione (GSH) accumulation compared to cells with wild -type p53. We show that mice containing the S47 variant display increased mTOR activity and oxidative metabolism, as well as larger size, improved metabolic efficiency, and signs of superior fitness. Mechanistically, we show that mTOR and its positive regulator Rheb display increased association in S47 cells; this is due to an altered redox state of GAPDH in S47 cells that inhibits its ability to bind and sequester Rheb. Compounds that decrease glutathione normalize GAPDH-Rheb complexes and mTOR activity in S47 cells. This study reveals a novel layer of regulation of mTOR by p53, and raises the possibility that this variant may have been selected for in early Africa.


Asunto(s)
Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética , Sustitución de Aminoácidos/genética , Animales , Población Negra/genética , Línea Celular , Glutatión/metabolismo , Glucólisis , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Serina-Treonina Quinasas TOR/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Cancers (Basel) ; 12(6)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604836

RESUMEN

The monocarboxylate transporter 1 (MCT1) is a key element in tumor cell metabolism and inhibition of MCT1 with AZD3965 is undergoing clinical trials. We aimed to investigate nutrient fluxes associated with MCT1 inhibition by AZD3965 to identify possible biomarkers of drug action. We synthesized an 18F-labeled lactate analogue, [18F]-S-fluorolactate ([18F]-S-FL), that was used alongside [18F]fluorodeoxyglucose ([18F]FDG), and 13C-labeled glucose and lactate, to investigate the modulation of metabolism with AZD3965 in diffuse large B-cell lymphoma models in NOD/SCID mice. Comparative analysis of glucose and lactate-based probes showed a preference for glycolytic metabolism in vitro, whereas in vivo, both glucose and lactate were used as metabolic fuel. While intratumoral L-[1-13C]lactate and [18F]-S-FL were unchanged or lower at early (5 or 30 min) timepoints, these variables were higher compared to vehicle controls at 4 h following treatment with AZD3965, which indicates that inhibition of MCT1-mediated lactate import is reversed over time. Nonetheless, AZD3965 treatment impaired DLBCL tumor growth in mice. This was hypothesized to be a consequence of metabolic strain, as AZD3965 treatment showed a reduction in glycolytic intermediates and inhibition of the TCA cycle likely due to downregulated PDH activity. Glucose ([18F]FDG and D-[13C6]glucose) and lactate-based probes ([18F]-S-FL and L-[1-13C]lactate) can be successfully used as biomarkers for AZD3965 treatment.

20.
Cancer Discov ; 10(9): 1282-1295, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32499221

RESUMEN

Older patients with melanoma (>50 years old) have poorer prognoses and response rates to targeted therapy compared with young patients (<50 years old), which can be driven, in part, by the aged microenvironment. Here, we show that aged dermal fibroblasts increase the secretion of neutral lipids, especially ceramides. When melanoma cells are exposed to the aged fibroblast lipid secretome, or cocultured with aged fibroblasts, they increase the uptake of lipids via the fatty acid transporter FATP2, which is upregulated in melanoma cells in the aged microenvironment and known to play roles in lipid synthesis and accumulation. We show that blocking FATP2 in melanoma cells in an aged microenvironment inhibits their accumulation of lipids and disrupts their mitochondrial metabolism. Inhibiting FATP2 overcomes age-related resistance to BRAF/MEK inhibition in animal models, ablates tumor relapse, and significantly extends survival time in older animals. SIGNIFICANCE: These data show that melanoma cells take up lipids from aged fibroblasts, via FATP2, and use them to resist targeted therapy. The response to targeted therapy is altered in aged individuals because of the influences of the aged microenvironment, and these data suggest FATP2 as a target to overcome resistance.See related commentary by Montal and White, p. 1255.This article is highlighted in the In This Issue feature, p. 1241.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Coenzima A Ligasas/metabolismo , Fibroblastos/metabolismo , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Senescencia Celular , Técnicas de Cocultivo , Coenzima A Ligasas/antagonistas & inhibidores , Dermis/citología , Dermis/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Queratinocitos/metabolismo , Metabolismo de los Lípidos , Melanoma/patología , Terapia Molecular Dirigida/métodos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Cutáneas/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...