Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 61(19): 5559-5566, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255782

RESUMEN

As the COVID-19 pandemic was overtaking the world in the spring of 2020, the National Institute of Standards and Technology (NIST) began collaborating with the National Biodefense Analysis and Countermeasures Center to study the inactivation of SARS-CoV-2 after exposure to different ultraviolet (UV) and blue light wavelengths. This paper describes a 1 kHz pulsed laser and projection system used to study the doses required to inactive SARS-CoV-2 over the wavelength range of 222 to 488 nm. This paper builds on NIST's previous work for water pathogen inactivation using UV laser irradiation. The design of the laser and projection system and its performance in a Biosafety Level 3 (BSL-3) laboratory are given. The SARS-CoV-2 inactivation results (published elsewhere by Schuit, M.A., et al., expected 2022) demonstrate that a tunable laser projection system is an invaluable tool for this research.


Asunto(s)
COVID-19 , Desinfección , Humanos , Desinfección/métodos , SARS-CoV-2 , Pandemias , Rayos Ultravioleta , Rayos Láser , Agua
2.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35779426

RESUMEN

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Desinfección/métodos , Humanos , Luz , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
3.
J Infect Dis ; 224(10): 1641-1648, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-33822064

RESUMEN

BACKGROUND: Our laboratory previously examined the influence of environmental conditions on the stability of an early isolate of SARS-CoV-2 (hCoV-19/USA/WA-1/2020) in aerosols generated from culture medium or simulated saliva. However, genetic differences have emerged among SARS-CoV-2 lineages, and it is possible that these differences may affect environmental stability and the potential for aerosol transmission. METHODS: The influence of temperature, relative humidity, and simulated sunlight on the decay of 4 SARS-CoV-2 isolates in aerosols, including 1 belonging to the recently emerged B.1.1.7 lineage, were compared in a rotating drum chamber. Aerosols were generated from simulated respiratory tract lining fluid to represent aerosols originating from the deep lung. RESULTS: No differences in the stability of the isolates were observed in the absence of simulated sunlight at either 20°C or 40°C. However, a small but statistically significant difference in the stability was observed between some isolates in simulated sunlight at 20°C and 20% relative humidity. CONCLUSIONS: The stability of SARS-CoV-2 in aerosols does not vary greatly among currently circulating lineages, including B.1.1.7, suggesting that the increased transmissibility associated with recent SARS-CoV-2 lineages is not due to enhanced survival in the environment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Humedad , Aerosoles y Gotitas Respiratorias
4.
J Virol Methods ; 292: 114116, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33689788

RESUMEN

A variety of methods have been developed for quantification of infectious Ebola virus in clinical or laboratory samples, but existing methods often require extensive operator involvement, manual assay scoring, or the use of custom reagents. In this study, we utilize a recently developed Ebola-specific reporter cell line that expresses ZsGreen in response to Ebola virus infection, in conjunction with semi-automated processing and quantification techniques, to develop an unbiased, high-throughput microtitration assay for quantification of infectious Ebola virus in vitro. This assay was found to have equivalent sensitivity to a standardized plaque assay for quantifying viral titers. However, the new assay could be implemented with fewer reagents and processing steps, reduced subjectivity, and higher throughput. This assay may be useful for a variety of applications, particularly studies that require the detection or quantification of infectious Ebola virus in large numbers of samples.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Línea Celular , Fiebre Hemorrágica Ebola/diagnóstico , Ensayos Analíticos de Alto Rendimiento , Humanos
5.
PLoS Negl Trop Dis ; 15(2): e0009001, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33524051

RESUMEN

Previous field and laboratory studies investigating airborne Burkholderia pseudomallei have used a variety of different aerosol samplers to detect and quantify concentrations of the bacteria in aerosols. However, the performance of aerosol samplers can vary in their ability to preserve the viability of collected microorganisms, depending on the resistance of the organisms to impaction, desiccation, or other stresses associated with the sampling process. Consequently, sampler selection is critical to maximizing the probability of detecting viable microorganisms in collected air samples in field studies and for accurate determination of aerosol concentrations in laboratory studies. To inform such decisions, the present study assessed the performance of four laboratory aerosol samplers, specifically the all-glass impinger (AGI), gelatin filter, midget impinger, and Mercer cascade impactor, for collecting aerosols containing B. pseudomallei generated from suspensions in two types of culture media. The results suggest that the relative performance of the sampling devices is dependent on the suspension medium utilized for aerosolization. Performance across the four samplers was similar for aerosols generated from suspensions supplemented with 4% glycerol. However, for aerosols generated from suspensions without glycerol, use of the filter sampler or an impactor resulted in significantly lower estimates of the viable aerosol concentration than those obtained with either the AGI or midget impinger. These results demonstrate that sampler selection has the potential to affect estimation of doses in inhalational animal models of melioidosis, as well as the likelihood of detection of viable B. pseudomallei in the environment, and will be useful to inform design of future laboratory and field studies.


Asunto(s)
Técnicas Bacteriológicas/instrumentación , Burkholderia pseudomallei/aislamiento & purificación , Nebulizadores y Vaporizadores , Aerosoles , Carga Bacteriana , Burkholderia pseudomallei/crecimiento & desarrollo
6.
Aerosol Sci Technol ; 55(2): 142-153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38077296

RESUMEN

Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 4°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.

7.
J Infect Dis ; 222(4): 564-571, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32525979

RESUMEN

Aerosols represent a potential transmission route of COVID-19. This study examined effect of simulated sunlight, relative humidity, and suspension matrix on stability of SARS-CoV-2 in aerosols. Simulated sunlight and matrix significantly affected decay rate of the virus. Relative humidity alone did not affect the decay rate; however, minor interactions between relative humidity and other factors were observed. Mean decay rates (± SD) in simulated saliva, under simulated sunlight levels representative of late winter/early fall and summer were 0.121 ±â€…0.017 min-1 (90% loss, 19 minutes) and 0.306 ±â€…0.097 min-1 (90% loss, 8 minutes), respectively. Mean decay rate without simulated sunlight across all relative humidity levels was 0.008 ±â€…0.011 min-1 (90% loss, 286 minutes). These results suggest that the potential for aerosol transmission of SARS-CoV-2 may be dependent on environmental conditions, particularly sunlight. These data may be useful to inform mitigation strategies to minimize the potential for aerosol transmission.


Asunto(s)
Microbiología del Aire , Betacoronavirus/efectos de la radiación , Infecciones por Coronavirus/transmisión , Neumonía Viral/transmisión , Luz Solar , Aerosoles , Animales , COVID-19 , Chlorocebus aethiops , Simulación por Computador , Medios de Cultivo , Humedad , Concentración de Iones de Hidrógeno , Pandemias , Análisis de Regresión , SARS-CoV-2 , Saliva/química , Saliva/virología , Células Vero
8.
J Infect Dis ; 222(2): 214-222, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32432672

RESUMEN

Previous studies have demonstrated that SARS-CoV-2 is stable on surfaces for extended periods under indoor conditions. In the present study, simulated sunlight rapidly inactivated SARS-CoV-2 suspended in either simulated saliva or culture media and dried on stainless steel coupons. Ninety percent of infectious virus was inactivated every 6.8 minutes in simulated saliva and every 14.3 minutes in culture media when exposed to simulated sunlight representative of the summer solstice at 40°N latitude at sea level on a clear day. Significant inactivation also occurred, albeit at a slower rate, under lower simulated sunlight levels. The present study provides the first evidence that sunlight may rapidly inactivate SARS-CoV-2 on surfaces, suggesting that persistence, and subsequently exposure risk, may vary significantly between indoor and outdoor environments. Additionally, these data indicate that natural sunlight may be effective as a disinfectant for contaminated nonporous materials.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , COVID-19 , Humanos , SARS-CoV-2 , Luz Solar
9.
Microbiome ; 8(1): 1, 2020 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31901242

RESUMEN

BACKGROUND: During a period of rapid growth in our understanding of the microbiology of the built environment in recent years, the majority of research has focused on bacteria and fungi. Viruses, while probably as numerous, have received less attention. In response, the Alfred P. Sloan Foundation supported a workshop entitled "Viruses in the Built Environment (VIBE)," at which experts in environmental engineering, environmental microbiology, epidemiology, infection prevention, fluid dynamics, occupational health, metagenomics, and virology convened to synthesize recent advances and identify key research questions and knowledge gaps regarding viruses in the built environment. RESULTS: Four primary research areas and funding priorities were identified. First, a better understanding of viral communities in the built environment is needed, specifically which viruses are present and their sources, spatial and temporal dynamics, and interactions with bacteria. Second, more information is needed about viruses and health, including viral transmission in the built environment, the relationship between virus detection and exposure, and the definition of a healthy virome. The third research priority is to identify and evaluate interventions for controlling viruses and the virome in the built environment. This encompasses interactions among viruses, buildings, and occupants. Finally, to overcome the challenge of working with viruses, workshop participants emphasized that improved sampling methods, laboratory techniques, and bioinformatics approaches are needed to advance understanding of viruses in the built environment. CONCLUSIONS: We hope that identifying these key questions and knowledge gaps will engage other investigators and funding agencies to spur future research on the highly interdisciplinary topic of viruses in the built environment. There are numerous opportunities to advance knowledge, as many topics remain underexplored compared to our understanding of bacteria and fungi. Video abstract.


Asunto(s)
Entorno Construido , Congresos como Asunto , Virosis/transmisión , Fenómenos Fisiológicos de los Virus , Virus/aislamiento & purificación , Biología Computacional , Humanos , Metagenómica , Virus/genética
10.
J Infect Dis ; 221(3): 372-378, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31778532

RESUMEN

BACKGROUND: Environmental parameters, including sunlight levels, are known to affect the survival of many microorganisms in aerosols. However, the impact of sunlight on the survival of influenza virus in aerosols has not been previously quantified. METHODS: The present study examined the influence of simulated sunlight on the survival of influenza virus in aerosols at both 20% and 70% relative humidity using an environmentally controlled rotating drum aerosol chamber. RESULTS: Measured decay rates were dependent on the level of simulated sunlight, but they were not significantly different between the 2 relative humidity levels tested. In darkness, the average decay constant was 0.02 ± 0.06 min-1, equivalent to a half-life of 31.6 minutes. However, at full intensity simulated sunlight, the mean decay constant was 0.29 ± 0.09 min-1, equivalent to a half-life of approximately 2.4 minutes. CONCLUSIONS: These results are consistent with epidemiological findings that sunlight levels are inversely correlated with influenza transmission, and they can be used to better understand the potential for the virus to spread under varied environmental conditions.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/efectos de la radiación , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Luz Solar , Rayos Ultravioleta , Aerosoles , Animales , Perros , Humedad , Células de Riñón Canino Madin Darby , Temperatura
11.
Emerg Infect Dis ; 24(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29261093

RESUMEN

Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.


Asunto(s)
Desinfectantes/farmacología , Ebolavirus/efectos de los fármacos , Blanqueadores/farmacología , Células Cultivadas/virología , Pruebas con Sangre Seca , Humanos , Laboratorios , Ácido Peracético/farmacología
12.
PLoS One ; 11(2): e0148476, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849135

RESUMEN

In support of the response to the 2013-2016 Ebola virus disease (EVD) outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05) on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces), and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May), in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks.


Asunto(s)
Ebolavirus/fisiología , Equipo de Protección Personal/virología , Animales , Sangre/virología , Chlorocebus aethiops , Ebolavirus/patogenicidad , Heces/virología , Humanos , Humedad , Especificidad de la Especie , Células Vero/virología , Vómitos/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...