Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 114(4): 653-663, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32671874

RESUMEN

A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.


Asunto(s)
Bacillus subtilis/metabolismo , Ácidos Grasos/biosíntesis , Fosfolípidos/biosíntesis , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis , Fosfolípidos/metabolismo , Regulón
2.
FEBS J ; 281(10): 2324-38, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24641521

RESUMEN

UNLABELLED: Cerulenin is a fungal toxin that inhibits both eukaryotic and prokaryotic ketoacyl-acyl carrier protein synthases or condensing enzymes. It has been used experimentally to treat cancer and obesity, and is a potent inhibitor of bacterial growth. Understanding the molecular mechanisms of resistance to cerulenin and similar compounds is thus highly relevant for human health. We have previously described a Bacillus subtilis cerulenin-resistant strain, expressing a point-mutated condensing enzyme FabF (FabF[I108F]) (i.e. FabF with isoleucine 108 substituted by phenylalanine). We now report the crystal structures of wild-type FabF from B. subtilis, both alone and in complex with cerulenin, as well as of the FabF[I108F] mutant protein. The three-dimensional structure of FabF[I108F] constitutes the first atomic model of a condensing enzyme that remains active in the presence of the inhibitor. Soaking the mycotoxin into preformed wild-type FabF crystals allowed for noncovalent binding into its specific pocket within the FabF core. Interestingly, only co-crystallization experiments allowed us to trap the covalent complex. Our structure shows that the covalent bond between Cys163 and cerulenin, in contrast to that previously proposed, implicates carbon C3 of the inhibitor. The similarities between Escherichia coli and B. subtilis FabF structures did not explain the reported inability of ecFabF[I108F] (i.e. FabF from Escherichia coli with isoleucine 108 substituted by phenylalanine) to elongate medium and long-chain acyl-ACPs. We now demonstrate that the E. coli modified enzyme efficiently catalyzes the synthesis of medium and long-chain ketoacyl-ACPs. We also characterized another cerulenin-insensitive form of FabF, conferring a different phenotype in B. subtilis. The structural, biochemical and physiological data presented, shed light on the mechanisms of FabF catalysis and resistance to cerulenin. DATABASE: Crystallographic data (including atomic coordinates and structure factors) have been deposited in the Protein Data Bank under accession codes 4LS5, 4LS6, 4LS7 and 4LS8.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cerulenina/farmacología , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/genética , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Genes Bacterianos , Humanos , Modelos Moleculares , Micotoxinas/farmacología , Mutación Puntual , Estructura Cuaternaria de Proteína , Electricidad Estática
3.
PLoS Pathog ; 9(1): e1003108, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23300457

RESUMEN

The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human pathogen.


Asunto(s)
Malonil Coenzima A/metabolismo , Lípidos de la Membrana/genética , Staphylococcus aureus/metabolismo , Factores de Transcripción/ultraestructura , Transcripción Genética , Antibacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proliferación Celular , Cristalografía por Rayos X , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Secuencias Hélice-Giro-Hélice/genética , Lípidos de la Membrana/biosíntesis , Conformación Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus/genética , Factores de Transcripción/metabolismo
4.
Mol Microbiol ; 83(2): 261-74, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22111992

RESUMEN

Spore formation in Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of cell-cell communication. One pathway, which couples the proteolytic activation of the mother cell transcription factor σ(E) to the action of a forespore synthesized signal molecule, SpoIIR, has remained enigmatic. Signalling by SpoIIR requires the protein to be exported to the intermembrane space between forespore and mother cell, where it will interact with and activate the integral membrane protease SpoIIGA. Here we show that SpoIIR signal activity as well as the cleavage of its N-terminal extension is strictly dependent on the prespore fatty acid biosynthetic machinery. We also report that a conserved threonine residue (T27) in SpoIIR is required for processing, suggesting that signalling of SpoIIR is dependent on fatty acid synthesis probably because of acylation of T27. In addition, SpoIIR localization in the forespore septal membrane depends on the presence of SpoIIGA. The orchestration of σ(E) activation in the intercellular space by an acylated signal protein provides a new paradigm to ensure local transmission of a weak signal across the bilayer to control cell-cell communication during development.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Comunicación Celular , Factor sigma/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo , Acilación , Bacillus subtilis/fisiología , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Péptido Hidrolasas/metabolismo , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Esporas Bacterianas/fisiología
5.
Biochemistry ; 49(14): 3161-7, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20201588

RESUMEN

The FapR protein of Bacillus subtilis has been shown to play an important role in membrane lipid homeostasis. FapR acts as a repressor of many genes involved in fatty acid and phospholipid metabolism (the fap regulon). FapR binding to DNA is antagonized by malonyl-CoA, and thus FapR acts as a sensor of the status of fatty acid biosynthesis. However, malonyl-CoA is utilized for fatty acid synthesis only following its conversion to malonyl-ACP, which plays a central role in the initiation and elongation cycles carried out by the type II fatty acid synthase. Using in vitro transcription studies and isothermal titration calorimetry, we show here that malonyl-ACP binds FapR, disrupting the repressor-operator complex with an affinity similar to that of its precursor malonyl-CoA. NMR experiments reveal that there is no protein-protein recognition between ACP and FapR. These findings are consistent with the crystal structure of malonyl-ACP, which shows that the malonyl-phosphopantetheine moiety protrudes away from the protein core and thus can act as an effector ligand. Therefore, FapR regulates the expression of the fap regulon in response to the composition of the malonyl-phosphopantetheine pool. This mechanism ensures that fatty acid biosynthesis in B. subtilis is finely regulated at the transcriptional level by sensing the concentrations of the two first intermediates (malonyl-CoA and malonyl-ACP) in order to balance the production of membrane phospholipids.


Asunto(s)
Proteína Transportadora de Acilo/química , Ácidos Grasos/biosíntesis , Proteína Transportadora de Acilo/genética , Bacillus subtilis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Malonil Coenzima A/química , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transcripción Genética
6.
Microbiology (Reading) ; 156(Pt 2): 484-495, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19850612

RESUMEN

Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid biosynthesis. The molecular mechanisms of regulation of the acpP structural gene, as well as the function of its gene product, are poorly characterized in Bacillus subtilis and other Gram-positive organisms. Here, we report that transcription of acpP takes place from two different promoters: PfapR and PacpP. Expression of acpP from PfapR is coordinated with a cluster of genes involved in lipid synthesis (the fapR operon); the operon consists of fapR-plsX-fabD-fabG-acpP. PacpP is located immediately upstream of the acpP coding sequence, and is necessary and sufficient for normal fatty acid synthesis. We also report that acpP is essential for growth and differentiation, and that ACP localizes in the mother-cell compartment of the sporangium during spore formation. These results provide the first detailed characterization of the expression of the ACP-encoding gene in a Gram-positive bacterium, and highlight the importance of this protein in B. subtilis physiology.


Asunto(s)
Proteína Transportadora de Acilo/genética , Bacillus subtilis/genética , Proteína Transportadora de Acilo/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Familia de Multigenes , Operón , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
7.
Mol Microbiol ; 68(4): 987-96, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18384517

RESUMEN

Bacteria stringently regulate the synthesis of their membrane phospholipids, but the responsible regulatory mechanisms are incompletely understood. Bacillus subtilis FabF, the target of the mycotoxin cerulenin, catalyses the condensation of malonyl-ACP with acyl-ACP to extend the growing acyl chain by two carbons. Here we show that B. subtilis strains containing the fabF1 allele, which codes for the cerulenin-insensitive protein FabF[I108F], overexpressed several genes involved in fatty acid and phospholipid biosynthesis (the fap regulon) and had significantly elevated levels of malonyl-CoA. These results pinpointed FabF[I108F] as responsible for the increased malonyl-CoA production, which in turn acts as an inducer of the fap regulon by impairing the binding of the FapR repressor to its DNA targets. Synthesis of acyl-ACPs by a cell-free fatty acid system prepared from fabF1 cells showed the accumulation of short- and medium-chain acyl-ACPs. These results indicate that the acyl-ACP chain length acceptance of FabF[I108F] is biased towards shorter acyl-ACPs. We also provide evidence that upregulation of FabF[I108F] is essential for survival and for resistance to cerulenin of fabF1 cells. These findings indicate that malonyl-CoA is a key molecule to monitor lipid metabolism functioning and trigger appropriate genetic and biochemical adjustments to relieve dysfunctions of this essential metabolic pathway.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Bacillus subtilis/enzimología , Regulación Bacteriana de la Expresión Génica , Metabolismo de los Lípidos/genética , Malonil Coenzima A/genética , Proteínas Represoras/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/efectos de los fármacos , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Bacillus subtilis/genética , Cerulenina/farmacología , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Fosfolípidos/genética , Fosfolípidos/metabolismo , Regulón , Proteínas Represoras/genética
8.
Curr Opin Microbiol ; 11(2): 148-52, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18372209

RESUMEN

Bacterial cells stringently regulate the synthesis of their membrane phospholipids but the responsible mechanisms are incompletely understood. Recent biochemical, genetic and structural analyses have greatly expanded the knowledge of lipid metabolism in Gram-positive bacteria, revealing that these organisms use novel mechanisms to regulate this essential pathway. A remarkable progress was the identification of a new pathway for the initiation of phospholipid biosynthesis that uncovered a mechanism that coordinates fatty acid and phospholipid biosynthesis. Recent advances in structure determination of a global transcription factor have led to significant insights of the underlying complexities and functional elegance of membrane lipid homeostasis in Gram-positive bacteria.


Asunto(s)
Acido Graso Sintasa Tipo II/metabolismo , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/enzimología , Lípidos de la Membrana/biosíntesis , Acido Graso Sintasa Tipo II/genética , Bacterias Grampositivas/genética , Lípidos de la Membrana/química , Modelos Moleculares , Fosfolípidos/biosíntesis , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
9.
J Bacteriol ; 189(16): 5816-24, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17557823

RESUMEN

plsX (acyl-acyl carrier protein [ACP]:phosphate acyltransferase), plsY (yneS) (acyl-phosphate:glycerol-phosphate acyltransferase), and plsC (yhdO) (acyl-ACP:1-acylglycerol-phosphate acyltransferase) function in phosphatidic acid formation, the precursor to membrane phospholipids. The physiological functions of these genes was inferred from their in vitro biochemical activities, and this study investigated their roles in gram-positive phospholipid metabolism through the analysis of conditional knockout strains in the Bacillus subtilis model system. The depletion of PlsX led to the cessation of both fatty acid synthesis and phospholipid synthesis. The inactivation of PlsY also blocked phospholipid synthesis, but fatty acid formation continued due to the appearance of acylphosphate intermediates and fatty acids arising from their hydrolysis. Phospholipid synthesis ceased following PlsC depletion, but fatty acid synthesis continued at a high rate, leading to the accumulation of fatty acids arising from the dephosphorylation of 1-acylglycerol-3-P followed by the deacylation of monoacylglycerol. Analysis of glycerol 3-P acylation in B. subtilis membranes showed that PlsY was an acylphosphate-specific acyltransferase, whereas PlsC used only acyl-ACP as an acyl donor. PlsX was found in the soluble fraction of disrupted cells but was associated with the cell membrane in intact organisms. These data establish that PlsX is a key enzyme that coordinates the production of fatty acids and membrane phospholipids in B. subtilis.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Grasos/biosíntesis , Fosfolípidos/biosíntesis , Bacillus subtilis/genética , Genes Bacterianos
10.
J Biol Chem ; 282(30): 21738-45, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17535816

RESUMEN

Diacylglycerol kinases (DagKs) are key enzymes in lipid metabolism that function to reintroduce diacylglycerol formed from the hydrolysis of phospholipids into the biosynthetic pathway. Bacillus subtilis is a prototypical Gram-positive bacterium with a lipoteichoic acid structure containing repeating units of sn-glycerol-1-P groups derived from phosphatidylglycerol head groups. The B. subtilis homolog of the prokaryotic DagK gene family (dgkA; Pfam01219) was not a DagK but rather was an undecaprenol kinase. The three members of the soluble DagK protein family (Pfam00781) in B. subtilis were tested by complementation of an E. coli dgkA mutant, and only the essential yerQ gene possessed DagK activity. This gene was dubbed dgkB, and the soluble protein product was purified, and its DagK activity was verified in vitro. Conditional inactivation of dgkB led to the accumulation of diacylglycerol and the cessation of lipoteichoic acid formation in B. subtilis. This study identifies a soluble protein encoded by the dgkB (yerQ) gene as an essential kinase in the diacylglycerol cycle that drives lipoteichoic acid production.


Asunto(s)
Bacillus subtilis/enzimología , Diacilglicerol Quinasa/metabolismo , Lipopolisacáridos/biosíntesis , Ácidos Teicoicos/biosíntesis , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Cartilla de ADN , Diacilglicerol Quinasa/deficiencia , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/aislamiento & purificación , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Cinética , Datos de Secuencia Molecular , Familia de Multigenes , Plásmidos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
12.
EMBO J ; 25(17): 4074-83, 2006 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16932747

RESUMEN

Malonyl-CoA is an essential intermediate in fatty acid synthesis in all living cells. Here we demonstrate a new role for this molecule as a global regulator of lipid homeostasis in Gram-positive bacteria. Using in vitro transcription and binding studies, we demonstrate that malonyl-CoA is a direct and specific inducer of Bacillus subtilis FapR, a conserved transcriptional repressor that regulates the expression of several genes involved in bacterial fatty acid and phospholipid synthesis. The crystal structure of the effector-binding domain of FapR reveals a homodimeric protein with a thioesterase-like 'hot-dog' fold. Binding of malonyl-CoA promotes a disorder-to-order transition, which transforms an open ligand-binding groove into a long tunnel occupied by the effector molecule in the complex. This ligand-induced modification propagates to the helix-turn-helix motifs, impairing their productive association for DNA binding. Structure-based mutations that disrupt the FapR-malonyl-CoA interaction prevent DNA-binding regulation and result in a lethal phenotype in B. subtilis, suggesting this homeostatic signaling pathway as a promising target for novel chemotherapeutic agents against Gram-positive pathogens.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Lípidos/biosíntesis , Malonil Coenzima A/química , Pliegue de Proteína , Proteínas Represoras/biosíntesis , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Dimerización , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Proteínas Represoras/genética
13.
J Bacteriol ; 187(22): 7631-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16267287

RESUMEN

The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon. Using DNA microarrays we found that, in addition to cysH, almost all of the genes required for sulfate assimilation are constitutively expressed in cysK mutants. These results indicate that CysK, besides its enzymatic role in cysteine biosynthesis, is a global negative regulator of genes involved in sulfur metabolism.


Asunto(s)
Bacillus subtilis/enzimología , Cisteína Sintasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Azufre/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Oxígeno/metabolismo , Cisteína/biosíntesis , Cisteína Sintasa/genética , Escherichia coli , Fusión Génica , Genes Reporteros , Análisis de Secuencia por Matrices de Oligonucleótidos , Operón , beta-Galactosidasa/análisis , beta-Galactosidasa/genética
14.
Curr Opin Microbiol ; 8(2): 149-53, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15802245

RESUMEN

Fatty acid synthesis is coordinately regulated with phospholipid, macromolecular synthesis and growth as part of the response to changes in the environment. Many of these processes are rapid responses of the integrated biochemical network and do not involve changes in gene expression. An important recent development is the identification and characterization of transcription factors that modify pathway activity by either altering the expression levels of a few important genes or controlling a global adjustment in the expression of the entire pathway. For most of these transcription factors the signaling molecules controlling their activities are still poorly defined.


Asunto(s)
Bacterias/genética , Regulación Bacteriana de la Expresión Génica , Lípidos de la Membrana/biosíntesis , Transcripción Genética , Bacterias/metabolismo
15.
Dev Cell ; 4(5): 663-72, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12737802

RESUMEN

Bacterial cells exert exquisite control over the biosynthesis of their membrane lipids, but the mechanisms are obscure. We describe the identification and purification from Bacillus subtilis of a transcription factor, FapR, that controls the expression of many genes involved in fatty acid and phospholipid metabolism (the fap regulon). Expression of this fap regulon is influenced by antibiotics that specifically inhibit the fatty acid biosynthetic pathway. We show that FapR negatively regulates fap expression and that the effects of antibiotics on fap expression are mediated by FapR. We further show that decreasing the cellular levels of malonyl-CoA, an essential molecule for fatty acid elongation, inhibits expression of the fap regulon and that this effect is FapR dependent. Our results indicate that control of FapR by the cellular pools of malonyl-CoA provides a mechanism for sensing the status of fatty acid biosynthesis and to adjust the expression of the fap regulon accordingly.


Asunto(s)
Bacillus subtilis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lípidos de la Membrana/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Secuencia de Bases , División Celular , Secuencia Conservada/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Ácidos Grasos/biosíntesis , Ácidos Grasos/química , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Malonil Coenzima A/metabolismo , Lípidos de la Membrana/química , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Homología de Secuencia de Aminoácido , Factores de Tiempo , Factores de Transcripción/química , Factores de Transcripción/aislamiento & purificación , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA