Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gastroenterology ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636680

RESUMEN

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.

2.
Methods Enzymol ; 695: 29-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521589

RESUMEN

G-quadruplexes (G4) are functionally important nucleic acid structures, involved in many cellular pathways. They are often dynamically regulated in cells, which makes detecting them in vivo challenging and dependent on sophisticated technical equipment. Therefore, in vitro studies are commonly performed as a first step to confirm a candidate sequence folds into a G4. Several methods have been developed, each with its individual pros and cons. A highly accessible and quick approach, without the need for specialized equipment, is the detection of G4s in native gels using light-up probes. These molecules become fluorescent after specifically binding to G4s. Several different classes have been discovered, emitting light in various colors, and some possess specificity for certain G4 topologies, which makes them highly versatile tools for G4 visualization. Here, we will explore the general procedure using the light-up probe NMM on RNA G4s and discuss advantages and limitations of this method.


Asunto(s)
G-Cuádruplex , ARN/química , Colorantes Fluorescentes/química , ADN/metabolismo , Coloración y Etiquetado
3.
BMC Biol ; 22(1): 5, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38185627

RESUMEN

BACKGROUND: SARS-CoV-2 infection depends on the host cell factors angiotensin-converting enzyme 2, ACE2, and the transmembrane serinprotease 2, TMPRSS2. Potential inhibitors of these proteins would be ideal targets against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Our data opens the possibility that changes within TMPRSS2 can modulate the outcome during a SARS-CoV-2 infection. RESULTS: We reveal that TMPRSS2 acts not only during viral entry but has also an important role during viral replication. In addition to previous functions for TMPRSS2 during viral entry, we determined by specific downregulation of distinct isoforms that only isoform 1 controls and supports viral replication. G-quadruplex (G4) stabilization by chemical compounds impacts TMPRSS2 gene expression. Here we extend and in-depth characterize these observations and identify that a specific G4 in the first exon of the TMPRSS2 isoform 1 is particular targeted by the G4 ligand and affects viral replication. Analysis of potential single nucleotide polymorphisms (SNPs) reveals that a reported SNP at this G4 in isoform 1 destroys the G4 motif and makes TMPRSS2 ineffective towards G4 treatment. CONCLUSION: These findings uncover a novel mechanism in which G4 stabilization impacts SARS-CoV-2 replication by changing TMPRSS2 isoform 1 gene expression.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Regulación hacia Abajo , Isoformas de Proteínas , Exones , Serina Endopeptidasas/genética
4.
Biol Chem ; 402(5): 581-591, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33021960

RESUMEN

DHX36 is a member of the DExD/H box helicase family, which comprises a large number of proteins involved in various cellular functions. Recently, the function of DHX36 in the regulation of G-quadruplexes (G4s) was demonstrated. G4s are alternative nucleic acid structures, which influence many cellular pathways on a transcriptional and post-transcriptional level. In this review we provide an overview of the current knowledge about DHX36 structure, substrate specificity, and mechanism of action based on the available models and crystal structures. Moreover, we outline its multiple functions in cellular homeostasis, immunity, and disease. Finally, we discuss the open questions and provide potential directions for future research.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/química , G-Cuádruplex , Humanos , Conformación Proteica
5.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31315989

RESUMEN

Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5' untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps.IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


Asunto(s)
Hepacivirus/enzimología , Hepacivirus/crecimiento & desarrollo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Iniciación de la Transcripción Genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Perfilación de la Expresión Génica , Humanos
6.
ChemMedChem ; 14(3): 334-342, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30548820

RESUMEN

Cellular chaperones that belong to the heat-shock protein 90 (Hsp90) family are a prerequisite for successful viral propagation for most viruses. The hepatitis C virus (HCV) uses Hsp90 for maturation, folding, and modification of viral proteins. Based on our previous discovery that marine alkaloid analogues with a 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole-2-amine structure show inhibition of HCV replication and binding to Hsp90, a series of twelve novel compounds based on this scaffold was designed and synthesized. The aim was improved Hsp90 affinity and anti-HCV activity. Through structural optimization, improved binding to Hsp90 and specific HCV inhibition in genotype 1b and 2a replicon models was achieved for three compounds belonging to the newly synthesized series. Furthermore, these compounds efficiently inhibited replication of full-length HCV genotype 2a in a reporter virus RNA assay with IC50 values ranging from 0.03 to 0.6 µm.


Asunto(s)
Antivirales/farmacología , Benzotiazoles/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Tiazoles/farmacología , Antivirales/síntesis química , Antivirales/química , Benzotiazoles/síntesis química , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Replicación Viral/efectos de los fármacos
7.
Nat Commun ; 9(1): 2613, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973597

RESUMEN

The liver-specific microRNA-122 (miR-122) recognizes two conserved sites at the 5' end of the hepatitis C virus (HCV) genome and contributes to stability, translation, and replication of the viral RNA. We show that stimulation of the HCV internal ribosome entry site (IRES) by miR-122 is essential for efficient viral replication. The mechanism relies on a dual function of the 5' terminal sequence in the complementary positive (translation) and negative strand (replication), requiring different secondary structures. Predictions and experimental evidence argue for several alternative folds involving the miR-binding region (MBR) adjacent to the IRES and interfering with its function. Mutations in the MBR, designed to suppress these dysfunctional structures indeed stimulate translation independently of miR-122. Conversely, MBR mutants favoring alternative folds show impaired IRES activity. Our results therefore suggest that miR-122 binding assists the folding of a functional IRES in an RNA chaperone-like manner by suppressing energetically favorable alternative secondary structures.


Asunto(s)
Hepacivirus/genética , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno/genética , Sitios Internos de Entrada al Ribosoma , MicroARNs/genética , Biosíntesis de Proteínas , ARN Viral/química , Secuencia de Bases , Línea Celular Tumoral , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hepacivirus/metabolismo , Hepatocitos/virología , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Transducción Genética
8.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046459

RESUMEN

Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality.IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses.


Asunto(s)
Colesterol/metabolismo , Endosomas/fisiología , Hepacivirus/fisiología , Homeostasis , Replicación Viral , Transporte Biológico , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Retículo Endoplásmico/química , Retículo Endoplásmico/fisiología , Retículo Endoplásmico/virología , Endosomas/química , Endosomas/virología , Células HEK293 , Hepacivirus/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína Niemann-Pick C1 , Interferencia de ARN , ARN Viral/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Proteínas no Estructurales Virales/metabolismo
10.
Nat Microbiol ; 2: 16247, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991882

RESUMEN

With a single exception, all isolates of hepatitis C virus (HCV) require adaptive mutations to replicate efficiently in cell culture. Here, we show that a major class of adaptive mutations regulates the activity of a cellular lipid kinase, phosphatidylinositol 4-kinase IIIα (PI4KA). HCV needs to stimulate PI4KA to create a permissive phosphatidylinositol 4-phosphate-enriched membrane microenvironment in the liver and in primary human hepatocytes (PHHs). In contrast, in Huh7 hepatoma cells, the virus must acquire loss-of-function mutations that prevent PI4KA overactivation. This adaptive mechanism is necessitated by increased PI4KA levels in Huh7 cells compared with PHHs, and is conserved across HCV genotypes. PI4KA-specific inhibitors promote replication of unadapted viral isolates and allow efficient replication of patient-derived virus in cell culture. In summary, this study has uncovered a long-sought mechanism of HCV cell-culture adaptation and demonstrates how a virus can adapt to changes in a cellular environment associated with tumorigenesis.

11.
J Virol ; 89(20): 10548-68, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26269178

RESUMEN

UNLABELLED: All major types of interferon (IFN) efficiently inhibit hepatitis C virus (HCV) replication in vitro and in vivo. Remarkably, HCV replication is not sensitive to IFN-γ in the hepatoma cell line Huh6, despite an intact signaling pathway. We performed transcriptome analyses between Huh6 and Huh-7 cells to identify effector genes of the IFN-γ response and thereby identified the DExD/H box helicase DEAD box polypeptide 60-like (DDX60L) as a restriction factor of HCV replication. DDX60L and its homolog DEAD box polypeptide 60 (DDX60) were both induced upon viral infection and IFN treatment in primary human hepatocytes. However, exclusively DDX60L knockdown increased HCV replication in Huh-7 cells and rescued HCV replication from type II IFN as well as type I and III IFN treatment, suggesting that DDX60L is an important effector protein of the innate immune response against HCV. In contrast, we found no impact of DDX60L on replication of hepatitis A virus. DDX60L protein was detectable only upon strong ectopic overexpression, displayed a broad cytoplasmic distribution, but caused cytopathic effects under these conditions. DDX60L knockdown did not alter interferon-stimulated gene (ISG) induction after IFN treatment but inhibited HCV replication upon ectopic expression, suggesting that it is a direct effector of the innate immune response. It most likely inhibits viral RNA replication, since we found neither impact of DDX60L on translation or stability of HCV subgenomic replicons nor additional impact on assembly of infectious virus. Similar to DDX60, DDX60L had a moderate impact on RIG-I dependent activation of innate immunity, suggesting additional functions in the sensing of viral RNA. IMPORTANCE: Interferons induce a plethora of interferon-stimulated genes (ISGs), which are our first line of defense against viral infections. In addition, IFNs have been used in antiviral therapy, in particular against the human pathogen hepatitis C virus (HCV); still, their mechanism of action is not well understood, since diverse, overlapping sets of antagonistic effector ISGs target viruses with different biologies. Our work identifies DDX60L as a novel factor that inhibits replication of HCV. DDX60L expression is regulated similarly to that of its homolog DDX60, but our data suggest that it has distinct functions, since we found no contribution of DDX60 in combatting HCV replication. The identification of novel components of the innate immune response contributes to a comprehensive understanding of the complex mechanisms governing antiviral defense.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , Hepacivirus/genética , Hepatocitos/efectos de los fármacos , Interferón gamma/farmacología , Replicación Viral/genética , Línea Celular Tumoral , Supervivencia Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , Genes Reporteros , Genotipo , Hepacivirus/efectos de los fármacos , Hepacivirus/inmunología , Virus de la Hepatitis A/efectos de los fármacos , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Luciferasas/genética , Luciferasas/inmunología , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/inmunología , Receptores Inmunológicos , Replicón , Transducción de Señal , Transcriptoma
12.
Hepatology ; 62(2): 397-408, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25866017

RESUMEN

UNLABELLED: Hepatitis A virus (HAV) and hepatitis C virus (HCV) are two positive-strand RNA viruses sharing a similar biology, but causing opposing infection outcomes, with HAV always being cleared and HCV establishing persistence in the majority of infections. To gain deeper insight into determinants of replication, persistence, and treatment, we established a homogenous cell-culture model allowing a thorough comparison of RNA replication of both viruses. By screening different human liver-derived cell lines with subgenomic reporter replicons of HAV as well as of different HCV genotypes, we found that Huh7-Lunet cells supported HAV- and HCV-RNA replication with similar efficiency and limited interference between both replicases. HAV and HCV replicons were similarly sensitive to interferon (IFN), but differed in their ability to establish persistent replication in cell culture. In contrast to HCV, HAV replicated independently from microRNA-122 and phosphatidylinositol 4-kinase IIIα and ß (PI4KIII). Both viruses were efficiently inhibited by cyclosporin A and NIM811, a nonimmunosuppressive analog thereof, suggesting an overlapping dependency on cyclophilins for replication. However, analysis of a broader set of inhibitors revealed that, in contrast to HCV, HAV does not depend on cyclophilin A, but rather on adenosine-triphosphate-binding cassette transporters and FK506-binding proteins. Finally, silibinin, but not its modified intravenous formulation, efficiently inhibited HAV genome replication in vitro, suggesting oral silibinin as a potential therapeutic option for HAV infections. CONCLUSION: We established a cell-culture model enabling comparative studies on RNA replication of HAV and HCV in a homogenous cellular background with comparable replication efficiency. We thereby identified new host cell targets and potential treatment options for HAV and set the ground for future studies to unravel determinants of clearance and persistence.


Asunto(s)
Hepacivirus/genética , Virus de la Hepatitis A/genética , Interferones/farmacología , ARN Viral/genética , Replicación Viral/genética , Células Cultivadas , Femenino , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Hepatitis A/tratamiento farmacológico , Virus de la Hepatitis A/efectos de los fármacos , Virus de la Hepatitis A/fisiología , Hepatitis B/tratamiento farmacológico , Humanos , Interferones/uso terapéutico , Masculino , ARN Viral/efectos de los fármacos , Sensibilidad y Especificidad , Replicación Viral/efectos de los fármacos
13.
PLoS One ; 7(11): e49435, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185331

RESUMEN

The human gammaherpesvirus Kaposi sarcoma-associated herpesvirus is strongly linked to neoplasms of endothelial and B-cell origin. The majority of tumor cells in these malignancies are latently infected, and latency genes are consequently thought to play a critical role in virus-induced tumorigenesis. One such factor is kshv-miR-K12-11, a viral microRNA that is constitutively expressed in cell lines derived from KSHV-associated tumors, and that shares perfect homology of its seed sequence with the cellular miR-155. Since miR-155 is overexpressed in a number of human tumors, it is conceivable that mimicry of miR-155 by miR-K12-11 may contribute to cellular transformation in KSHV-associated disease. Here, we have performed a side-by-side study of phenotypic alterations associated with constitutive expression of either human miR-155 or viral miR-K12-11 in bone marrow-derived hematopoietic stem cells. We demonstrate that retroviral-mediated gene transfer and hematopoietic progenitor cell transplantation into C57BL/6 mice leads to increased B-cell fractions in lymphoid organs, as well as to enhanced germinal center formation in both microRNA-expressing mouse cohorts. We furthermore identify Jarid2, a component of Polycomb repressive complex 2, as a novel validated target of miR-K12-11, and confirm its downregulation in miR-K12-11 as well as miR-155 expressing bone marrow cells. Our findings confirm and extend previous observations made in other mouse models, and underscore the notion that miR-K12-11 may have arisen to mimic miR-155 functions in KSHV-infected B-cells. The expression of miR-K12-11 may represent one mechanism by which KSHV presumably aims to reprogram naïve B-cells towards supporting long-term latency, which at the same time is likely to pre-dispose infected lymphocytes to malignant transformation.


Asunto(s)
Linfocitos B/virología , Herpesvirus Humano 8/metabolismo , MicroARNs/metabolismo , Sarcoma de Kaposi/metabolismo , Animales , Linfocitos B/citología , Células de la Médula Ósea/citología , Proliferación Celular , Técnicas de Transferencia de Gen , Células HEK293 , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Plásmidos/metabolismo , ARN Viral/metabolismo
14.
PLoS One ; 7(4): e36029, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558311

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on individual steps of virus replication. METHODS: We measured replication of subgenomic genotype (GT) 1b and 2a RNAs as well as full-length GT2a genomes in the presence of BAs using quantitative RT-PCR and luciferase assays. Cell entry was determined using HCV pseudoparticles (HCVpp). Virus assembly and release were quantified using a core-specific ELISA. Replicon chimeras were employed to characterize genotype-specific modulation of HCV by BAs. Lunet CD81/GFP-NLS-MAVS cells were used to determine infection of Con1 particles. RESULTS: BAs increased RNA-replication of GT1b replicons up to 10-fold but had no effect on subgenomic GT2a replicons both in Huh-7 and HuH6 cells. They did not increase viral RNA translation, virus assembly and release or cell entry. Lowering replication efficiency of GT2a replicons rendered them susceptible to stimulation by BAs. Moreover, replication of full length GT1b with or without replication enhancing mutations and GT2a genomes were also stimulated by BAs. CONCLUSIONS: Bile acids specifically enhance RNA-replication. This is not limited to GT1, but also holds true for GT2a full length genomes and subgenomic replicons with low replication capacity. The increase of HCV replication by BAs may influence the efficacy of antiviral treatment in vivo and may improve replication of primary HCV genomes in cell culture.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , ARN Viral/genética , Replicación Viral/efectos de los fármacos , Células Cultivadas , Ácido Quenodesoxicólico/farmacología , Genes Reporteros/genética , Genoma Viral/genética , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Hepacivirus/genética , Hepacivirus/patogenicidad , Humanos , Mutación/genética , Virión/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/genética
15.
PLoS Pathog ; 7(9): e1002239, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931553

RESUMEN

In contrast to most enveloped viruses, poxviruses produce infectious particles that do not acquire their internal lipid membrane by budding through cellular compartments. Instead, poxvirus immature particles are generated from atypical crescent-shaped precursors whose architecture and composition remain contentious. Here we describe the 2.6 Å crystal structure of vaccinia virus D13, a key structural component of the outer scaffold of viral crescents. D13 folds into two jellyrolls decorated by a head domain of novel fold. It assembles into trimers that are homologous to the double-barrel capsid proteins of adenovirus and lipid-containing icosahedral viruses. We show that, when tethered onto artificial membranes, D13 forms a honeycomb lattice and assembly products structurally similar to the viral crescents and immature particles. The architecture of the D13 honeycomb lattice and the lipid-remodeling abilities of D13 support a model of assembly that exhibits similarities with the giant mimivirus. Overall, these findings establish that the first committed step of poxvirus morphogenesis utilizes an ancestral lipid-remodeling strategy common to icosahedral DNA viruses infecting all kingdoms of life. Furthermore, D13 is the target of rifampicin and its structure will aid the development of poxvirus assembly inhibitors.


Asunto(s)
Proteínas de la Cápside/química , Liposomas/química , Virus Vaccinia/química , Virus Vaccinia/ultraestructura , Cápside/química , Proteínas de la Cápside/ultraestructura , Cristalografía por Rayos X , Membranas Artificiales , Microscopía Electrónica , Modelos Moleculares , Estructura Terciaria de Proteína , Virus Vaccinia/fisiología , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...