Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(15): 4397-4411, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37300408

RESUMEN

Biodiversity offsetting is a globally influential policy mechanism for reconciling trade-offs between development and biodiversity loss. However, there is little robust evidence of its effectiveness. We evaluated the outcomes of a jurisdictional offsetting policy (Victoria, Australia). Offsets under Victoria's Native Vegetation Framework (2002-2013) aimed to prevent loss and degradation of remnant vegetation, and generate gains in vegetation extent and quality. We categorised offsets into those with near-complete baseline woody vegetation cover ("avoided loss", 2702 ha) and with incomplete cover ("regeneration", 501 ha), and evaluated impacts on woody vegetation extent from 2008 to 2018. We used two approaches to estimate the counterfactual. First, we used statistical matching on biophysical covariates: a common approach in conservation impact evaluation, but which risks ignoring potentially important psychosocial confounders. Second, we compared changes in offsets with changes in sites that were not offsets for the study duration but were later enrolled as offsets, to partially account for self-selection bias (where landholders enrolling land may have shared characteristics affecting how they manage land). Matching on biophysical covariates, we estimated that regeneration offsets increased woody vegetation extent by 1.9%-3.6%/year more than non-offset sites (138-180 ha from 2008 to 2018) but this effect weakened with the second approach (0.3%-1.9%/year more than non-offset sites; 19-97 ha from 2008 to 2018) and disappeared when a single outlier land parcel was removed. Neither approach detected any impact of avoided loss offsets. We cannot conclusively demonstrate whether the policy goal of 'net gain' (NG) was achieved because of data limitations. However, given our evidence that the majority of increases in woody vegetation extent were not additional (would have happened without the scheme), a NG outcome seems unlikely. The results highlight the importance of considering self-selection bias in the design and evaluation of regulatory biodiversity offsetting policy, and the challenges of conducting robust impact evaluations of jurisdictional biodiversity offsetting policies.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Madera , Motivación , Victoria , Ecosistema
2.
J Environ Manage ; 312: 114867, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378468

RESUMEN

Rewilding is increasingly considered as an option for environmental regeneration, with potential for enhancing both biodiversity and ecosystem services. So far, however, there is little practical information on how to gauge the benefits and limitations of rewilding schemes on ecosystem composition, structure and functioning. To address this knowledge gap, we explored how satellite remote sensing can contribute to informing the monitoring and evaluation of rewilding projects, using the Knepp estate as a case study. To our knowledge, this study is the first to assess the impacts of rewilding as an ecological regeneration strategy on landscape structure and functioning over several decades. Results show significant changes in land cover distribution over the past 20 years inside rewilded areas in the Knepp estate, with a 41.4% decrease in areas with brown agriculture and grass, a roughly sixfold increase in areas covered with shrubs, and a 40.9% increase in areas with trees; vegetation in the rewilded areas also showed a widespread increase in annual primary productivity. Changes in land cover and primary productivity are particularly pronounced in the part of the estate that began its rewilding journey with a period of large herbivore absence. Altogether, our approach clearly demonstrates how freely available satellite data can (1) provide vital insights about long-term changes in ecosystem composition, structure and functioning, even for small, heterogeneous and relatively intensively used landscapes; and (2) help deepen our understanding of the impacts of rewilding on vegetation distribution and dynamics, in ways that complement existing ground-based studies on the impacts of this approach on ecological communities.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Agricultura , Biodiversidad , Conservación de los Recursos Naturales/métodos , Herbivoria
3.
Ambio ; 51(1): 93-102, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33983560

RESUMEN

More than 30 years after it was first proposed as a biodiversity conservation strategy, rewilding remains a controversial concept. There is currently little agreement about what the goals of rewilding are, and how these are best achieved, limiting the utility of rewilding in mainstream conservation. Achieving consensus about rewilding requires agreeing about what "wild" means, but many different definitions exist, reflecting the diversity of values in conservation. There are three key debates that must be addressed to find a consensual definition of "wild": (1) to which extent can people and "wild" nature co-exist?; (2) how much space does "wild" nature need? and (3) what kinds of "wild" nature do we value? Depending on the kinds of "wild" nature rewilding aims to create, rewilding policy will be faced with managing different opportunities and risks for biodiversity and people.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Humanos , Políticas
4.
Trends Ecol Evol ; 36(1): 29-38, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33020018

RESUMEN

Climate change and land use change often interact, altering biodiversity in unexpected ways. Research into climate change-land use change (CC-LUC) interactions has so far focused on quantifying biodiversity outcomes, rather than identifying the underlying ecological mechanisms, making it difficult to predict interactions and design appropriate conservation responses. We propose a risk-based framework to further our understanding of CC-LUC interactions. By identifying the factors driving the exposure and vulnerability of biodiversity to land use change, and then examining how these factors are altered by climate change (or vice versa), this framework will allow the effects of different interaction mechanisms to be compared across geographic and ecological contexts, supporting efforts to reduce biodiversity loss from interacting stressors.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema
5.
J Environ Manage ; 267: 110636, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421670

RESUMEN

Rapid climate change is threatening the stability and functioning of Arctic ecosystems. As the Arctic warms, shrubs have been widely observed to expand, which has potentially serious consequences for global climate regulation and for the ecological processes characterising these ecosystems. However, it is currently unclear why this shrubification has been spatially uneven across the Arctic, with herbivory being suggested as a key regulating factor. By taking advantage of freely available satellite imagery spanning three decades, we mapped changes in shrub cover in the Yamal Peninsula and related these to changes in summer temperature and reindeer population size. We found no evidence that shrubs had expanded in the study site, despite increasing summer temperatures. At the same time, herbivore pressure increased significantly, with the local reindeer population size growing by about 75%. Altogether, our results thus point towards increases in large herbivore pressure having compensated for the warming of the Peninsula, halting the shrubification of the area. This suggests that strategic semi-domesticated reindeer husbandry, which is a common practice across the Eurasian Arctic, could represent an efficient environmental management strategy for maintaining open tundra landscapes in the face of rapid climate change.


Asunto(s)
Reno , Animales , Regiones Árticas , Cambio Climático , Ecosistema , Tundra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...