Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 625: 1129-1145, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29996410

RESUMEN

The international Long-Term Ecological Research Network (ILTER) encompasses hundreds of long-term research/monitoring sites located in a wide array of ecosystems that can help us understand environmental change across the globe. We evaluated long-term trends (1990-2015) for bulk deposition, throughfall and runoff water chemistry and fluxes, and climatic variables in 25 forested catchments in Europe belonging to the UNECE International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). Many of the IM sites form part of the monitoring infrastructures of this larger ILTER network. Trends were evaluated for monthly concentrations of non-marine (anthropogenic fraction, denoted as x) sulphate (xSO4) and base cations x(Ca+Mg), hydrogen ion (H+), inorganic N (NO3 and NH4) and ANC (Acid Neutralising Capacity) and their respective fluxes into and out of the catchments and for monthly precipitation, runoff and air temperature. A significant decrease of xSO4 deposition resulted in decreases in concentrations and fluxes of xSO4 in runoff, being significant at 90% and 60% of the sites, respectively. Bulk deposition of NO3 and NH4 decreased significantly at 60-80% (concentrations) and 40-60% (fluxes) of the sites. Concentrations and fluxes of NO3 in runoff decreased at 73% and 63% of the sites, respectively, and NO3 concentrations decreased significantly at 50% of the sites. Thus, the LTER/ICP IM network confirms the positive effects of the emission reductions in Europe. Air temperature increased significantly at 61% of the sites, while trends for precipitation and runoff were rarely significant. The site-specific variation of xSO4 concentrations in runoff was most strongly explained by deposition. Climatic variables and deposition explained the variation of inorganic N concentrations in runoff at single sites poorly, and as yet there are no clear signs of a consistent deposition-driven or climate-driven increase in inorganic N exports in the catchments.

2.
Sci Total Environ ; 538: 600-10, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26318813

RESUMEN

High atmospheric deposition of nitrogen (N) impacts functions and structures of N limited ecosystems. Due to filtering and related canopy drip effects forests are particularly exposed to N deposition. Up to now, this was proved by many studies using technical deposition samplers but there are only some few studies analysing the canopy drip effect on the accumulation of N in moss and related small scale atmospheric deposition patterns. Therefore, we investigated N deposition and related accumulation of N in forests and in (neighbouring) open fields by use of moss sampled across seven European countries. Sampling and chemical analyses were conducted according to the experimental protocol of the European Moss Survey. The ratios between the measured N content in moss sampled inside and outside of forests were computed and used to calculate estimates for non-sampled sites. Potentially influencing environmental factors were integrated in order to detect their relationships to the N content in moss. The overall average N content measured in moss was 20.0mgg(-1) inside and 11.9mgg(-1) outside of forests with highest N values in Germany inside of forests. Explaining more than 70% of the variance, the multivariate analyses confirmed that the sampling site category (site with/without canopy drip) showed the strongest correlation with the N content in moss. Spatial variances due to enhanced dry deposition in vegetation stands should be considered in future monitoring and modelling of atmospheric N deposition.


Asunto(s)
Contaminantes Atmosféricos/análisis , Briófitas/química , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Atmósfera/química , Ecosistema , Europa (Continente) , Bosques , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...