Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Malar J ; 22(1): 366, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037026

RESUMEN

BACKGROUND: Children in Kenya spend a substantial amount of time at school, including at dawn and dusk when mosquitoes are active. With changing vector behaviour towards early morning biting, it is important to determine whether there is an additional risk of transmission in schools. This study sought to understand whether late morning biting by Anopheles funestus, previously documented in households in western Kenya, was replicated in schools. METHODS: From the 4th to the 6th of August 2023, human landing collections were conducted hourly in four schools in Alego Usonga sub-County, Siaya County. The collections were conducted in and outside five classrooms in each school and ran for 17 h, starting at 18:00 until 11:00 h the next morning. RESULTS: Anopheles funestus was the predominant species collected, forming 93.2% (N = 727) of the entire collection, with peak landing between 06:00 and 07:00 h and continuing until 11:00 h. More than half of the collected An. funestus were either fed or gravid, potentially indicative of multiple bloodmeals within each gonotrophic cycle, and had a sporozoite rate of 2.05%. CONCLUSION: School children spend up to 10 h of their daytime in schools, reporting between 06:00 and 07:00 h and staying in school until as late as 17:00 h, meaning that they receive potentially infectious mosquito bites during the morning hours in these settings. There is a need to consider vector control approaches targeting schools and other peridomestic spaces in the morning hours when An. funestus is active.


Asunto(s)
Anopheles , Mordeduras y Picaduras , Malaria , Animales , Niño , Humanos , Malaria/prevención & control , Kenia , Conducta Alimentaria , Factores de Riesgo , Mosquitos Vectores
2.
J Am Chem Soc ; 145(9): 5191-5202, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36745391

RESUMEN

In the field of supramolecular chemistry, host-guest systems have been extensively explored to encapsulate a wide range of substrates, owing to emerging functionalities in nanoconfined space that cannot be achieved in dilute solutions. However, host-guest chemistry is still limited to encapsulation of small guests. Herein, we construct a water-soluble metallo-supramolecular hexagonal prism with a large hydrophobic cavity by anchoring multiple polyethylene glycol chains onto the building blocks. Then, assembled prisms are able to encapsulate quantum dots (QDs) with diameters of less than 5.0 nm. Furthermore, we find that the supramolecular cage around each QD strongly modifies the photophysics of the QD by universally increasing the rates of QD relaxation processes via ultrafast electron and vibrational energy transfer. Taken together, these efforts expand the scope of substrates in host-guest systems and provide a new approach to tune the optical properties of QDs.

3.
Clin Infect Dis ; 76(7): 1161-1163, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36723870

RESUMEN

Return to international travel in the COVID-19 pandemic recovery period is expected to increase the number of patients with imported malaria in the United States (US). Malaria prevention in travelers and preparedness for timely diagnosis and appropriate treatment are key to minimize imported malaria morbidity and mortality. Intravenous artesunate (IVAS) is now available from commercial distributors in the US for the treatment of severe malaria. Hospitals and pharmacists should have a plan for malaria treatment, including stocking artemether-lumefantrine for uncomplicated malaria, and stocking or planning for rapid procurement of IVAS for the treatment of severe malaria.


Asunto(s)
Antimaláricos , COVID-19 , Malaria Falciparum , Malaria , Humanos , Estados Unidos/epidemiología , Antimaláricos/uso terapéutico , Pandemias/prevención & control , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/prevención & control , Artesunato/uso terapéutico , Viaje , Diagnóstico Precoz , Malaria Falciparum/tratamiento farmacológico , Prueba de COVID-19
4.
J Phys Chem Lett ; 13(32): 7454-7461, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35930790

RESUMEN

Two-dimensional (2D) spectroscopy encodes molecular properties and dynamics into expansive spectral data sets. Translating these data into meaningful chemical insights is challenging because of the many ways chemical properties can influence the spectra. To address the task of extracting chemical information from 2D spectroscopy, we study the capacity of simple feedforward neural networks (NNs) to map simulated 2D electronic spectra to underlying physical Hamiltonians. We examined hundreds of simulated 2D spectra corresponding to monomers and dimers with varied Franck-Condon active vibrations and monomer-monomer electronic couplings. We find the NNs are able to correctly characterize most Hamiltonian parameters in this study with an accuracy above 90%. Our results demonstrate that NNs can aid in interpreting 2D spectra, leading from spectroscopic features to underlying effective Hamiltonians.


Asunto(s)
Aprendizaje Automático , Vibración , Modelos Moleculares , Análisis Espectral/métodos
6.
J Am Chem Soc ; 144(25): 11386-11396, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35699940

RESUMEN

Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.


Asunto(s)
Vibración , Transferencia de Energía , Imidas , Perileno/análogos & derivados , Análisis Espectral/métodos
7.
BMC Infect Dis ; 22(1): 404, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468749

RESUMEN

BACKGROUND: The Centers for Disease Control and Prevention contracted with laboratories to sequence the SARS-CoV-2 genome from positive samples across the United States to enable public health officials to investigate the impact of variants on disease severity as well as the effectiveness of vaccines and treatment. Herein we present the initial results correlating RT-PCR quality control metrics with sample collection and sequencing methods from full SARS-CoV-2 viral genomic sequencing of 24,441 positive patient samples between April and June 2021. METHODS: RT-PCR confirmed (N Gene Ct value < 30) positive patient samples, with nucleic acid extracted from saliva, nasopharyngeal and oropharyngeal swabs were selected for viral whole genome SARS-CoV-2 sequencing. Sequencing was performed using Illumina COVIDSeq™ protocol on either the NextSeq550 or NovaSeq6000 systems. Informatic variant calling, and lineage analysis were performed using DRAGEN COVID Lineage applications on Illumina's Basespace cloud analytical system. All sequence data and variant calls were uploaded to NCBI and GISAID. RESULTS: An association was observed between higher sequencing coverage, quality, and samples with a lower Ct value, with < 27 being optimal, across both sequencing platforms and sample collection methods. Both nasopharyngeal swabs and saliva samples were found to be optimal samples of choice for SARS-CoV-2 surveillance sequencing studies, both in terms of strain identification and sequencing depth of coverage, with NovaSeq 6000 providing higher coverage than the NextSeq 550. The most frequent variants identified were the B.1.617.2 Delta (India) and P.1 Gamma (Brazil) variants in the samples sequenced between April 2021 and June 2021. At the time of submission, the most common variant > 99% of positives sequenced was Omicron. CONCLUSION: These initial analyses highlight the importance of sequencing platform, sample collection methods, and RT-PCR Ct values in guiding surveillance efforts. These surveillance studies evaluating genetic changes of SARS-CoV-2 have been identified as critical by the CDC that can affect many aspects of public health including transmission, disease severity, diagnostics, therapeutics, and vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiología
8.
Nat Chem ; 14(7): 786-793, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35469005

RESUMEN

Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.

9.
Curr Trop Med Rep ; 8(2): 99-103, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34290955

RESUMEN

PURPOSE OF REVIEW: International and domestic travelers may acquire a wide variety of infectious diseases transmitted by exposure to insects. Exposure to ticks may be associated with systemic infections clinically suspected through skin and soft tissue manifestations along with fever, myalgia, headache, and other related symptoms. Cutaneous lesions may include eschars at the site of initial contact, maculopapular rashes, or others as the result of systemic dissemination of viral, Rickettsial, parasitic, and protozoan infections acquired by exposure to different types of ticks. RECENT FINDINGS: Ticks represent the second most common global vector of transmission of infectious diseases to humans after mosquitoes. In some endemic regions, ticks are the most important vector of transmission of a great variety of infectious pathogens including protozoan (Babesia spp.), viral (Coltivirus), rickettsia, and bacterial infections (Francisella tularensis). With increasing international travel, different tick-borne diseases continue to emerge and being identified. SUMMARY: Identifying the cutaneous signs associated with tick-borne diseases is crucial to clinically suspect the diagnosis of a specific tick-borne illness. Minimizing the exposure to ticks during domestic or international travel represents the most important intervention to reducing the risk of tick-borne illnesses.

10.
J Phys Chem B ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34133180

RESUMEN

The excited-state dynamics of a spiro-fused terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer (sTDI2) in toluene and 2-methyltetrahydrofuran (mTHF) were investigated as a function of temperature using femtosecond- and nanosecond-transient absorption spectroscopy, as well as two-dimensional electronic spectroscopy. The spiro conjugation and the corresponding geometry of this compound guarantee a short intermonomer distance along with a partial orbital overlap between the orthogonal TDI π-electron systems, providing electronic coupling between the TDIs. Photoexcitation of sTDI2 in toluene, a low dielectric solvent, at 295 K, results in the ultrafast formation of a state composed of a coherent mixture of singlet 1(S1S0), multiexciton 1(T1T1), and charge-transfer (CT) electronic characters. This mixed species decays to decorrelated triplet states on the nanosecond timescale, completing the process of intramolecular singlet fission (SF) in sTDI2. Upon decreasing the temperature from 295 to 200 K, the contribution of the 1(T1T1) state to the mixed species decreases concurrently with an increase in the CT state character. We attribute this behavior to the variation in the vibrational energy level alignment between the states comprising the mixture due to changes in the temperature and hence the local dielectric environment. In contrast, photoexcitation of sTDI2 in more polar mTHF at 295 K results in the formation of a mixed singlet and CT state before undergoing symmetry-breaking charge separation, owing to the increased stabilization of the CT state in the medium. However, in glassy mTHF at 85 K, photoexcited sTDI2 exhibits discernible multiexciton character, comparable to that observed in toluene at 200 K, which we rationalize by the similarity of the dielectric constants under these two sets of conditions. These observations of mixed states of varying diabatic contributions over the range of experimental conditions show that the temperature and the static dielectric constant can directly control the composition of the electronically mixed excited state of sTDI2 and thus the fate of the SF process.

11.
Trop Med Infect Dis ; 6(2)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072787

RESUMEN

Chagas disease (CD) is the third most common parasitic infection globally and can cause cardiac and gastrointestinal complications. Around 300,000 carriers of CD live in the U.S., with about 3000 of those in Colorado. We described our experience in diagnosing CD at a Colorado teaching hospital to revise screening eligibility criteria. From 2006 to 2020, we reviewed Trypanosoma cruzi (TC) IgG serology results for 1156 patients in our institution. We identified 23 patients (1.99%) who had a positive test. A total of 14/23 (60%) of positive serologies never had confirmatory testing, and 7 of them were lost to follow up. Confirmatory testing, performed in 9 patients, resulted in being positive in 3. One additional case of CD was identified by positive tissue pathology. All four confirmed cases were among patients born in Latin America. While most of the testing for CD at our institution is part of the pretransplant screening, no confirmed cases of CD derived from this strategy. Exposure risk in this population is not always documented, and initial positive results from screening are not always confirmed. The lack of standardized screening protocols for CD in our institution contributes to underdiagnosis locally and in health systems nationwide. Given a large number of individuals in the U.S. with chronic CD, improved screening is warranted.

12.
Curr Opin Infect Dis ; 34(3): 264-271, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33899755

RESUMEN

PURPOSE OF REVIEW: This review provides an overview of arthropod-borne virus (arbovirus) infections that are important causes of human neurological infections world-wide. As many of the individual viruses in a specific genus or family cause overlapping clinical syndromes, this review discusses important viruses in groups to highlight some of the similarities and differences in groups of neuroinvasive arbovirus infections. RECENT FINDINGS: Arboviruses that cause neurological infections in humans continue to emerge and distribute to new regions. The geographic range of the vectors, the hosts and subsequent arbovirus infections in humans continues to expand and evolve. As emerging arboviruses move into new geographic regions, it is important to examine the associated epidemiological and clinical impacts of these infections as they enter new populations. SUMMARY: Arboviruses from the Flaviviridae, Togaviridae and Bunyaviridae families continue to emerge and spread into new regions. The arboviruses within these virus families cause characteristic neuroinvasive diseases in human populations. A complete understanding of the epidemiological and clinical features of the neuroinvasive arboviruses is important such that these pathogens can be recognized and diagnosed in humans as they emerge. Ongoing research to develop rapid, accurate diagnostics, therapeutic options and vaccines for these pathogens is needed to address future outbreaks of disease in human populations.


Asunto(s)
Infecciones por Arbovirus/virología , Arbovirus/clasificación , Infecciones del Sistema Nervioso Central/virología , Infecciones por Arbovirus/patología , Infecciones por Arbovirus/transmisión , Humanos
13.
J Clin Microbiol ; 59(6)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33795412

RESUMEN

Serological testing of large representative populations for antibodies to SARS-CoV-2 is needed to estimate seroprevalence, transmission dynamics, and the duration of antibody responses from natural infection and vaccination. In this study, a high-throughput SARS-CoV-2 multiplex microsphere immunoassay (MMIA) was developed for the receptor binding domain (RBD) and nucleocapsid (N) that was more sensitive than enzyme-linked immunosorbent assay (ELISA) (98% versus 87%). The MMIA was then applied and validated in 264 first responders in Colorado using serum and dried blood spot (DBS) eluates, compared to ELISA, and evaluated for neutralizing antibodies. Four percent (11/264) of first responders were seropositive in July to August 2020. Serum and DBS were highly correlated for anti-RBD and anti-N antibodies (R = 0.83, P < 0.0001 and R = 0.87, P < 0.0001, respectively) by MMIA. The MMIA accurately predicted SARS-CoV-2 neutralizing antibodies using DBS (R = 0.76, P = 0.037). On repeat antibody testing 3 months later, anti-RBD IgG decreased less rapidly than anti-N IgG measured by MMIA, with a median change in geometric median fluorescence intensity of 62% versus 79% (P < 0.01) for anti-RBD and anti-N IgG, respectively. This novel MMIA using DBS could be scalable for rapid and affordable SARS-CoV-2 serosurveillance in the United States and globally.


Asunto(s)
COVID-19 , Socorristas , Anticuerpos Antivirales , Prueba Serológica para COVID-19 , Colorado , Humanos , Inmunoensayo , Microesferas , SARS-CoV-2 , Estudios Seroepidemiológicos
15.
J Am Chem Soc ; 143(4): 2049-2058, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33464054

RESUMEN

Singlet fission (SF) is a photophysical process capable of boosting the efficiency of solar cells. Recent experimental investigations into the mechanism of SF provide evidence for coherent mixing between the singlet, triplet, and charge transfer basis states. Up until now, this interpretation has largely focused on electronic interactions; however, nuclear motions resulting in vibronic coupling have been suggested to support rapid and efficient SF in organic chromophore assemblies. Further information about the complex interactions between vibronic excited states is needed to understand the potential role of this coupling in SF. Here, we report mixed singlet and correlated triplet pair states giving rise to sub-50 fs SF in a terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer in which the two TDI molecules are covalently linked by a direct N-N connection at one of their imide positions, leading to a linear dimer with perpendicular TDI π systems. We observe the transfer of low-frequency coherent wavepackets between the initial predominantly singlet states to the product triplet-dominated states. This implies a non-negligible dependence of SF on nonadiabatic coupling in this dimer. We interpret our experimental results in the framework of a modified Holstein Hamiltonian, which predicts that vibronic interactions between low-frequency singlet modes and high-frequency correlated triplet pair motions lead to mixing of the pure basis states. These results highlight how nonadiabatic mixing can shape the complex potential energy landscape underlying ultrafast SF.

16.
J Chem Educ ; 98(10): 3090-3099, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35250048

RESUMEN

Nanoscience and technology research offer exciting avenues to modernize undergraduate-level General Chemistry curricula. In particular, spherical nucleic acid (SNA) nanoconjugates, which behave as "programmable atom equivalents" (PAEs) in the context of colloidal crystals, are one system that one can use to reinforce foundational concepts in chemistry including matter and atoms, the Periodic Table, Lewis dot structures and the octet rule, valency and valence-shell electron-pair repulsion (VSEPR) theory, and Pauling's rules, ultimately leading to enriching discussions centered on materials chemistry and biochemistry with key implications in medicine, optics, catalysis, and other areas. These lessons connect historical and modern concepts in chemistry, relate course content to current professional and popular science topics, inspire critical and creative thinking, and spur some students to continue their science, technology, engineering, and mathematics (STEM) education and attain careers in STEM fields. Ultimately, and perhaps most importantly, these lessons may expand the pool of young students interested in chemistry by making connections to a broader group of contemporary concepts and technologies that impact their lives and enhance their view of the field. Herein, a way of teaching aspects of General Chemistry in the context of modern nanoscience concepts is introduced to instructors and curricula developers at research institutions, primarily undergraduate institutions, and community colleges worldwide.

17.
J Occup Environ Med ; 63(3): 191-198, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33298759

RESUMEN

OBJECTIVES: Define the seroprevalence and risk factors for SARS-CoV-2 antibodies in Arapahoe County, Colorado first responders (eg, law enforcement, human services, fire departments). METHODS: Two hundred sixty four first responders were enrolled June to July 2020. SARS-CoV-2 seropositivity was defined as detection of immunoglobulin G (IgG) antibodies to both spike receptor binding domain and nucleocapsid in venous blood by validated enzyme-linked immunosorbent assay. We compared risk factors for being seropositive versus seronegative. RESULTS: 4% (11/264) were SARS-CoV-2 seropositive. Seropositive participants were significantly more likely to have lung disease (% seropositive, % seronegative; P-value) (36%, 8%; P = 0.01), prior SARS-CoV-2/COVID-19 testing (36%, 8%; P ≤ 0.01), a prior positive result (18%, less than 1%), and to believe they previously had COVID-19 (64%, 15%; P < 0.01). Only 15% of those believing they had COVID-19 had anti-SARS-CoV-2 antibodies. CONCLUSIONS: Human services employees and individuals with lung disease are at SARS-CoV-2 exposure risk. Few individuals believed they had COVID-19 had prior exposure.


Asunto(s)
COVID-19/epidemiología , Socorristas/estadística & datos numéricos , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/patología , COVID-19/transmisión , Prueba Serológica para COVID-19 , Colorado/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Estudios Seroepidemiológicos
20.
J Phys Chem A ; 124(41): 8478-8487, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32975426

RESUMEN

Photoexcitation of molecular chromophore aggregates can form excimer states that play a significant role in photophysical processes such as charge and energy transfer as well as singlet fission. An excimer state is commonly defined as a superposition of Frenkel exciton and charge transfer states. In this work, we investigate the dynamics of excimer formation and decay in π-stacked 9,10-bis(phenylethynyl)anthracene (BPEA) covalent dimers appended to a xanthene spacer, where the electronic coupling between the two BPEA molecules is adjusted by changing their longitudinal molecular slip distances. Using exciton coupling calculations, we quantify the relative contributions of Frenkel excitons and charge transfer states and find that there is an upper and lower threshold of the charge transfer contribution for efficient excimer formation to occur. Knowing these thresholds can aid the design of molecular aggregates that optimize singlet fission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...