Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sci Total Environ ; 934: 173275, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754498

RESUMEN

Climate change potentially threatens the sustainable production of highly valued cold-water fish species in flow-through systems, such as salmonids. By analysing the relationship of water temperature to hydrological characteristics, air temperature, solar exposure, and precipitation, this study predicted temperature dynamics of five temperate cold-water aquaculture facilities under four projected climate change scenarios. Air temperature was found to be directly associated with facility site water temperature, and based on rational assumptions, two of the five facilities were predicted to face critical warming by mid-century. Extreme precipitation events induced acute short-term increases in water temperature of up to 5 °C. Significantly lower warming, roughly equal to the projected climate change-induced increase, was seen with artificial shading lowering temperature by 1 °C. Complementary niche modelling revealed that 37-77 % of current cold-water facilities will likely incur suboptimal climate conditions by the end of the century. Shading of raceways, more efficient water use, and disease management are proposed as key actions to preserve cold-water aquaculture.

2.
Eur J Cancer ; 202: 113976, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484692

RESUMEN

BACKGROUND: Effective treatment options are limited for patients with advanced melanoma who have progressed on immune checkpoint inhibitors (ICI) and targeted therapies (TT). Preclinical models support the combination of ICI with TT; however, clinical trials evaluating the efficacy of triplet combinations in first-line setting showed limited advantage compared to TT only. METHODS: We conducted a retrospective, multicenter study, that included patients with advanced melanoma who were treated with BRAF/MEK inhibitors in combination with an anti-PD-(L)1 antibody (triplet therapy) after failure of at least one anti-PD-(L)1-based therapy and one TT in seven major melanoma centers between February 2016 and July 2022. RESULTS: A total of 48 patients were included, of which 32 patients, 66.7% had brain metastases, 37 patients (77.1%) had three or more metastatic organs and 21 patients (43.8%) had three or more treatment lines. The median follow-up time was 31.4 months (IQR, 22.27-40.45 months). The treatment with triplet therapy resulted in an ORR of 35.4% (n = 17) and a DCR of 47.9% (n = 23). The median DOR was 5.9 months (range, 3.39-14.27 months). Patients treated with BRAF/MEK inhibitors as the last treatment line showed a slightly lower ORR (29.6%) compared to patients who received ICI or chemotherapy last (ORR: 42.9%). Grade 3-4 treatment-related adverse events occurred in 25% of patients (n = 12), with seven patients (14.6%) requiring discontinuation of treatment with both or either drug. CONCLUSIONS: Triplet therapy has shown activity in heavily pretreated patients with advanced melanoma and may represent a potential treatment regimen after failure of ICI and TT.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/terapia , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Inhibidores de Proteínas Quinasas/efectos adversos , Mutación
3.
Front Physiol ; 15: 1338858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410809

RESUMEN

Smoltification was found to impact both immune and stress responses of farmed Atlantic salmon (Salmo salar), but little is known about how salinity change affects salmon months after completed smoltification. Here, we examined (1) the effect of salinity change from brackish water to seawater on the stress and immune responses in Atlantic salmon and (2) evaluated if functional diets enriched with microalgae can mitigate stress- and immune-related changes. Groups of Atlantic salmon were fed for 8 weeks with different microalgae-enriched diets in brackish water and were then transferred into seawater. Samples of the head kidney, gill, liver and plasma were taken before seawater transfer (SWT), 20 h after SWT, and 2 weeks after SWT for gene-expression analysis, plasma biochemistry and protein quantification. The salmon showed full osmoregulatory ability upon transfer to seawater reflected by high nkaα1b levels in the gill and tight plasma ion regulation. In the gill, one-third of 44 investigated genes were reduced at either 20 h or 2 weeks in seawater, including genes involved in cytokine signaling (il1b) and antiviral defense (isg15, rsad2, ifit5). In contrast, an acute response after 20 h in SW was apparent in the head kidney reflected by increased plasma stress indicators and induced expression of genes involved in acute-phase response (drtp1), antimicrobial defense (camp) and stress response (hspa5). However, after 2 weeks in seawater, the expression of antiviral genes (isg15, rsad2, znfx1) was reduced in the head kidney. Few genes (camp, clra, c1ql2) in the gill were downregulated by a diet with 8% inclusion of Athrospira platensis. The results of the present study indicate that salinity change months after smoltification evokes molecular stress- and immune responses in Atlantic salmon. However, microalgae-enriched functional diets seem to have only limited potential to mitigate the related changes.

4.
Sci Rep ; 13(1): 22563, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110473

RESUMEN

Via 16S rRNA gene amplicon sequencing, this study explores whether the gut mucus microbiota of rainbow trout is affected by the interaction of a plant-protein-based diet and a daily handling stressor (chasing with a fishing net) across two genetic lines (A, B). Initial body weights of fish from lines A and B were 124.7 g and 147.2 g, respectively. Fish were fed 1.5% of body weight per day for 59 days either of two experimental diets, differing in their fish meal [fishmeal-based diet (F): 35%, plant-based diet (V): 7%] and plant-based protein content (diet F: 47%, diet V: 73%). No diet- or stress-related effect on fish performance was observed at the end of the trial. However, we found significantly increased observed ASVs in the intestinal mucus of fish fed diet F compared to diet V. No significant differences in Shannon diversity could be observed between treatments. The autochthonous microbiota in fish fed with diet V was dominated by representatives of the genera Mycoplasma, Cetobacterium, and Ruminococcaceae, whereas Enterobacteriaceae and Photobacterium were significantly associated with diet F. The mucus bacteria in both genetic lines were significantly separated by diet, but neither by stress nor an interaction, as obtained via PERMANOVA. However, pairwise comparisons revealed that the diet effect was only significant in stressed fish. Therefore, our findings indicate that the mucus-associated microbiota is primarily modulated by the protein source, but this modulation is mediated by the stress status of the fish.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Proteínas de Plantas/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Microbioma Gastrointestinal/genética , Dieta , Alimentación Animal/análisis
5.
Oncol Res Treat ; 46 Suppl 4: 1, 2023.
Artículo en Alemán | MEDLINE | ID: mdl-37748445
6.
Anim Microbiome ; 5(1): 33, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386608

RESUMEN

BACKGROUND: The aim of the present study was to characterize the effects of handling stress on the microbiota in the intestinal gut contents of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet from two different breeding lines (initial body weights: A: 124.69 g, B: 147.24 g). Diets were formulated in accordance with commercial trout diets differing in their respective protein sources: fishmeal (35% in fishmeal-based diet F, 7% in plant protein-based diet V) and plant-based proteins (47% in diet F, 73% in diet V). Experimental diets were provided for 59 days to all female trout in two separate recirculating aquaculture systems (RASs; mean temperature: A: 15.17 °C ± 0.44, B: 15.42 °C ± 0.38). Half of the fish in each RAS were chased with a fishing net twice per day to induce long-term stress (Group 1), while the other half were not exposed to stress (Group 0). RESULTS: No differences in performance parameters were found between the treatment groups. By using 16S rRNA amplicon sequencing of the hypervariable region V3/V4, we examined the microbial community in the whole intestinal content of fish at the end of the trial. We discovered no significant differences in alpha diversity induced by diet or stress within either genetic trout line. However, the microbial composition was significantly driven by the interaction of stress and diet in trout line A. Otherwise, in trout line B, the main factor was stress. The communities of both breeding lines were predominantly colonized by bacteria from the phyla Fusobacteriota, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota. The most varying and abundant taxa were Firmicutes and Fusobacteriota, whereas at the genus level, Cetobacterium and Mycoplasma were key components in terms of adaptation. In trout line A, Cetobacterium abundance was affected by factor stress, and in trout line B, it was affected by the factor diet. CONCLUSION: We conclude that microbial gut composition, but neither microbial diversity nor fish performance, is highly influenced by stress handling, which also interacts with dietary protein sources. This influence varies between different genetic trout lines and depends on the fish's life history.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37121392

RESUMEN

As global temperatures increase so do the needs to investigate how the energy metabolism of fish responds to a broad range of thermal condition. Limited resources make it additionally important to use them sustainably in the feeds for aquaculture. Here we investigated the use of three different carbohydrate to lipid ratios (1:1; 1: 0.6; 1.4: 1 as non-protein energy substrates (NPES) in diets for rainbow trout (Oncorhynchus mykiss) under five different thermal regimes (12; 14; 16; 18; 20 °C) in a bioenergetic approach using a group respirometer. The results showed that the diet with carbohydrate as the main NPES resulted in a quadratic relationship of the specific dynamic action (SDA) values to temperature while diets with lipid as main NPES or a balanced ratio did not show such a response. SDA values in the diet with carbohydrate as the main NPES were significantly higher at temperatures around the optimum (15-17 °C) than the diets with lipid as the main NPES or with a balanced carbohydrate to lipid ratio. The retained energy (RE) was highly dependent on the standard metabolic rate (SMR) and SDA values did not carry over onto them. The protein utilization for energy combustion was significantly lower at 12 °C in the diet with carbohydrate as the main NPES than in the diet with lipid as the main NPES thus indicating that carbohydrates hold a relevant nutritional value especially at lower temperatures.


Asunto(s)
Carbohidratos de la Dieta , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Temperatura , Dieta , Lípidos
8.
J Fish Biol ; 103(1): 32-43, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37072902

RESUMEN

The authors performed an instantaneous bioenergetic study with rainbow trout (Oncorhynchus mykiss) of 206.3 g ± 2.9 g in a group respirometer of nine 250 l tanks at five different water temperatures (12, 14, 16, 18, 20°C) to determine the optimal thermal condition for a maximal visualization of the protein-sparing effect. Twelve fish per tank were tested at a stocking density of 9.94 kg m-3 ± 0.14 kg m-3 and fed three low-protein/high-energy diets with constant crude protein content of c. 35% and three different energy contents (17.35, 18.76, 20.50 MJ kg-1 ) once daily at a ration of 1.3% body weight (n = 3). Energy levels were increased by adding gelatinized wheat starch as a carbohydrate source and fish oil, canola oil and palmitin as lipid sources. Three different dietary digestible protein/digestible energy ratios (DP/DE: 20.38, 19.08, 18.09 mg kJ-1 ) were achieved by replacing bentonite as a non-nutritive filler with carbohydrates and lipids. Oxygen consumption and ammonia excretion were assessed to obtain the potentially retainable energy (RE) and ammonia quotient (AQ) as benchmarks for potential growth and protein-sparing effect. The results showed the lowest relative metabolic combustion of protein at 16.9°C ± 0.1°C. The authors determined this temperature to set the optimal thermal condition for the induction of a maximum protein-sparing effect in juvenile rainbow trout. Increasing the DP/DE ratio significantly altered the magnitude of the relative metabolic protein use but had no effect on its interactions with temperature. The authors were able to reduce average metabolic fuel use of protein across diets from 16.2% ± 2.3% at 12°C to 8.0% ± 1.2% at 16°C. This study found no relevant significant differences of RE with the environmental temperature.


Asunto(s)
Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Amoníaco/metabolismo , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/farmacología , Metabolismo Energético
9.
Aquac Nutr ; 2023: 7092657, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860968

RESUMEN

Sustainable aqua feeds have become an urgent necessity for future-oriented aquaculture sector development, and especially mineral supply could be limited when diets are being prepared with low amounts of animal-based sources. Since knowledge about the efficiency of organic trace mineral supplementation in different species of fish is limited, the effects of chromium DL-methionine in African catfish nutrition were evaluated. Four commercially based diets with increasing chromium DL-methionine supplementation (0, 0.2, 0.4, and 0.6 mg Cr kg-1) in the form of Availa-Cr 1000 were fed to African catfish (Clarias gariepinus B., 1822) in quadruplicate groups for 84 days. Growth performance parameters (final body weight, feed conversion ratio, specific growth rate, daily feed intake, protein efficiency ratio, and protein retention efficiency), biometric indices (mortality, hepatosomatic index, spleen somatic index, and hematocrit), and mineral retention efficiency were assessed at the end of the feeding trial. The specific growth rate was significantly increased in fish-fed diets with 0.2 mg Cr kg-1 and 0.4 mg Cr kg-1 supplementation in comparison with control and based on the second-degree polynomial regression analysis; supplementation with 0.33 mg Cr kg-1 was optimal in commercially based diets for African catfish. Chromium retention efficiency was reduced with increasing supplementation levels; however, the chromium content of the whole body was comparable to literature. The results suggest that organic chromium supplementation is a viable and safe supplement for diets to increase the growth performance of African catfish.

10.
Front Med (Lausanne) ; 10: 1117816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756176

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) are the standard of care for metastatic cutaneous melanoma (mCM) patients, but their efficacy in young adults aged less than 40 years remains unclear. Materials and methods: We retrospectively analyzed 303 stage IV melanoma patients of different ages treated with nivolumab, pembrolizumab, or ipilimumab plus nivolumab combination therapy. Clinical data and blood values such as LDH, CRP, and absolute immune cell counts were retrieved from the medical records. Pre-treatment serum concentrations of soluble immune checkpoint proteins were measured using ELISA. In addition, information on frequencies of various T cell subsets in the peripheral blood was collected from a previously reported study (ELEKTRA). Patient characteristics and clinical information was correlated with PFS and OS using univariate and multivariate cox regression analysis. Results: Of 303 patients, 33 (11%) were ≤ 40 years old. The older patients had a median age of 64 (95% CI: 61-66). Concerning prognostic parameters, there was no difference between the age groups, e.g., in gender, LDH, or the existence of brain or liver metastases. Patients aged ≤ 40 years [p = 0.014; HR: 1.6 (95% CI: 1.1-2.4)], presence of liver metastases [p = 0.016; HR: 1.4 (95% CI: 1.0-1.9)], line of ICI treatment [p = 0.009; HR: 1.4 (1.0-1.9)], elevated LDH [p = 0.076; HR: 1.3 (95% CI: 0.97-1.8)], and brain metastasis [p = 0.080; HR: 1.3 (95% CI: 0.97-1.7)], were associated with shorter PFS in univariate analysis. Multivariate analysis revealed that the patient's age (≤ 40 years) remains a high-risk factor upon adjusting for all potential confounders [p = 0.067; HR: 1.5 (95% CI: 0.97-2.3)]. Blood parameters revealed that patients ≤ 40 years have relatively higher frequencies of activated CD4 T cells (CD4 + Ki67 + CD4 + ICOS +) in the blood, and significantly lower number of basophils and CD45RA- memory T cells, compared to patients above 40 years (p < 0.05). In addition, patients ≤ 40 years experiencing disease progression within 6 months of ICI treatment had increased concentrations of sPDL1 (p = 0.05) and sTIM3 (p = 0.054) at baseline. Conclusion: Young patients with stage IV melanoma may experience shorter progression-free survival upon ICI treatment compared to patients above 40 years and are characterized by fewer basophils and memory T cells in the blood.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36706829

RESUMEN

Rising global temperatures have raised the need for detailed knowledge of the effects of rising temperatures on the physiology of animals used in aquaculture. Here we used a multifactorial bioenergetic approach using groups of rainbow trout (Oncorhynchus mykiss) with an average single fish weight of 183.75 g ± 0.65 g to investigate the interactions of feeding and temperature with key metabolic variables. We used a recirculating aquaculture respirometry system (RARS) to test three ration sizes (0.65; 0.975; 1.3% of live body weight (BW)) over a range of three consecutive temperatures (14; 17; 20 °C). The fish were fed once per day for 6 days at each temperature and subsequently starved for 5 days to return to standard metabolic rate (SMR). This study aimed to answer the highly discussed topic of the temperature dependency of key metabolic specific dynamic action (SDA)-variables SDAcoef and SDAdur. We were able to provide evidence, that in rainbow trout the SDAcoef is highly dependent on the environmental temperature in the first ever approach to assess these variables in a group respirometer with this species. We compared the results of this study with a sophisticated bioenergetic model by Elliot and Hurley (2002) and thereby provide evidence for the practicability of group respirometry as a method to assess bioenergetic data under culture like conditions.


Asunto(s)
Oncorhynchus mykiss , Animales , Temperatura , Metabolismo Energético
13.
Arch Anim Breed ; 62(1): 265-273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807637

RESUMEN

Information on phenotypic and genetic (co)variance for production traits in turbot is required to improve breeding programs. So far, information on morphometric growth traits is sparse and completely lacking on quality carcass traits like fillet weight or fillet yield for turbot. As part of a long-term study we explored the phenotypic and genetic (co)variance of 16 biometrical and carcass traits of three different European turbot strains. Fish were reared under commercial grow-out conditions, including size grading. We used molecular relatedness (MR) methods based on genotyping with 96 microsatellite markers and animal models. We included an adapted condition factor for Pleuronectiformes (FCI PLN ) and average daily weight gain (ADG) between the ages of 300 and 500 d post-hatch (dph) for their potential correlation with body weight at harvest. Heritability estimates for all traits were low to medium (0.04-0.29) when strains were jointly analyzed. Separate analysis of strains yielded higher heritability estimates (0.12-0.43). Genetic correlations between weight-related traits were highly positive (0.70-0.99), while runs with yield and ratio traits often resulted in unreliable estimates of genetic correlation due to high standard errors. Body weight ( h 2 = 0.19 ), fillet yield ( h 2 = 0.1 5), and dressing percentage ( h 2 = 0.17 ) are particularly promising selection traits for turbot breeding.

14.
PLoS One ; 14(5): e0216611, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31086380

RESUMEN

The reliance of the aquafeed industry on marine resources has to be reduced by innovative approaches in fish nutrition. Thus, a three-factorial approach (fish oil reduced diet, phytochemical genistein, and temperature reduction) was chosen to investigate the interaction of effects on growth performance and tissue omega-3 long chain polyunsaturated fatty acid (LC-PUFA) levels in juvenile sea bream (Sparus aurata, 12.5 ± 2.2 g). Genistein is a phytoestrogen with estrogen-like activity and thus LC-PUFA increasing potential. A decrease in the rearing temperature was chosen based on the positive effects of low temperature on fish lipid quality. The experimental diets were reduced in marine ingredients and had a fish oil content of either 6% dry matter (DM; F6: positive control) or 2% DM (F2: negative control) and were administered in the plain variant or with inclusion of 0.15% DM genistein (F6 + G and F2 + G). The feeding trial was performed simultaneously at 23°C and 19°C. The results indicated that solely temperature had a significant effect on growth performance and whole body nutrient composition of sea bream. Nevertheless, the interaction of all three factors significantly affected the fatty acid compositions of liver and fillet tissue. Most importantly, they led to a significant increase by 4.3% of fillet LC-PUFA content in sea bream fed with the diet F6 + G in comparison to control fish fed diet F6, when both groups were held at 19°C. It is hypothesized that genistein can act via estrogen-like as well as other mechanisms and that the dietary LC-PUFA content may impact its mode of action. Temperature most likely exhibited its effects indirectly via altered growth rates and metabolism. Although effects of all three factors and of genistein in particular were only marginal, they highlight a possibility to utilize the genetic capacity of sea bream to improve tissue lipid quality.


Asunto(s)
Alimentación Animal/análisis , Ácidos Grasos/metabolismo , Aceites de Pescado/administración & dosificación , Genisteína/administración & dosificación , Dorada/crecimiento & desarrollo , Dorada/metabolismo , Temperatura , Animales , Nutrientes/análisis , Fitoestrógenos/administración & dosificación
15.
Immunotherapy ; 11(8): 667-676, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31088239

RESUMEN

Aim: Autoimmune colitis is a typical and possible severe side effect among patients treated with ipilimumab. Patients & methods: We prospectively included 100 patients with metastasized melanoma under ipilimumab treatment in a radiological study of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT). PET evidence of pancolitis ('PET-colitis') was correlated with clinical variables. Results: We observed a significant correlation between PET-colitis and clinically significant diarrhoea, although PET-colitis was more frequent (49 vs 29% of patients, respectively). Neither PET-colitis nor diarrhoea was significantly correlated with response to therapy. Other immune-related adverse events, however, such as hypophysitis and hepatitis were associated with response to therapy and overall survival. Conclusion: Increased 18F-FDG uptake in the colon correlated with clinical symptoms but did not predict clinical outcome to ipilimumab.


Asunto(s)
Enfermedades Autoinmunes , Colitis , Fluorodesoxiglucosa F18/administración & dosificación , Ipilimumab/administración & dosificación , Melanoma , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Autoinmunes/diagnóstico por imagen , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/patología , Colitis/diagnóstico por imagen , Colitis/tratamiento farmacológico , Colitis/patología , Femenino , Humanos , Masculino , Melanoma/diagnóstico por imagen , Melanoma/tratamiento farmacológico , Melanoma/patología , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias
16.
Sci Rep ; 9(1): 2339, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787388

RESUMEN

The aim of the present study was to investigate the impact of dietary plant proteins on the gut microbiome of first feeding brown trout (Salmo trutta) reproduced from wild stocks and to evaluate whether the initial microbiome of brown trout fry can be permanently manipulated by the first feeding diet. Therefore, brown trout fry was fed diets based on either 0%, 50% or 90% plant-derived proteins from first feeding onwards and via 16S rRNA gene sequencing a strong dietary influence on the bacterial gut community on phylum and order level was detected. Proteobacteria and Fusobacteria were significantly enhanced when fishmeal was integrated into the experimental diet, whereas plant-derived proteins significantly promoted Firmicutes and Bacteroidetes. In order to evaluate whether the first feeding diet had a permanent effect on the initially established microbial gut community of juvenile brown trout, a cross-over diet-change was applied 61 days post first feeding. 48 days after the diet-change, the gut microbiome of all dietary groups was significantly different from the one initially established after first feeding. Moreover, the first feeding diet had no statistically significant influence on the gut microbiome after the diet-change, demonstrating no permanent effect on the gut microbiome formation.


Asunto(s)
Bacterias/crecimiento & desarrollo , Dieta , Microbioma Gastrointestinal , Trucha/microbiología , Animales , Biodiversidad , Filogenia , Análisis de Componente Principal
17.
PLoS One ; 14(1): e0210197, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30645603

RESUMEN

Plant oil utilization in aquafeeds is still the most practical option, although it decreases the content of the nutritionally highly valuable omega-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) in fish. Phytoestrogens and their metabolites are putatively able to affect genes encoding proteins centrally involved in the biosynthesis of EPA and DHA due to their estrogenic potential. Thus, the aim of the study was to screen the potential of the phytoestrogens to stimulate the biosynthesis of EPA and DHA in rainbow trout (Oncorhynchus mykiss). Additionally, the potential effects on growth performance, nutrient composition and hepatic lipid metabolism in rainbow trout were investigated. For that, a vegetable oil based diet served as a control diet (C) and was supplemented with 15 g/kg dry matter of biochanin A (BA), daidzein (DA), genistein (G) and equol (EQ), respectively. These five diets were fed to rainbow trout (initial body weight 83.3 ± 0.4 g) for 52 days. Growth performance and nutrient composition of whole body homogenates were not affected by the dietary treatments. Furthermore, feeding EQ to rainbow trout significantly increased DHA levels by +8% in whole body homogenates compared to samples of fish fed the diet C. A tendency towards increased DHA levels in whole body homogenates was found for fish fed the diet G. Fish fed diets BA and DA lacked these effects. Moreover, EQ and G fed fish showed significantly decreased hepatic mRNA steady state levels for fatty acyl desaturase 2a (delta-6) (fads2a(d6)). In contrast, carnitine palmitoyl transferases 1 (cpt1) hepatic mRNA steady state levels and hepatic Fads2a(d6) protein contents were not affected by the dietary treatment. In conclusion, when combined with dietary vegetable oils, equol and genistein seem to stimulate the biosynthesis of DHA and thereby increase tissue DHA levels in rainbow trout, however, only to a moderate extent.


Asunto(s)
Alimentación Animal , Vías Biosintéticas/efectos de los fármacos , Suplementos Dietéticos , Ácidos Docosahexaenoicos/biosíntesis , Oncorhynchus mykiss/metabolismo , Animales , Equol/administración & dosificación , Femenino , Explotaciones Pesqueras , Genisteína/administración & dosificación , Isoflavonas/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Aceites de Plantas/administración & dosificación
18.
Aquat Toxicol ; 206: 72-80, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30458405

RESUMEN

Elevated concentrations of carbon dioxide are a common stressor for fish and other aquatic animals. In particular, intensive aquaculture can impose prolonged periods of severe environmental hypercapnia, manifold exceeding CO2 concentrations of natural habitats. In order to cope with this stressor, gills are essential and constitute the primary organ in the acclimatization process. Yet, despite a general understanding of changes in ion regulation, not much is known with regard to other cellular mechanisms. In this study, we apply RT-qPCR to investigate changes in the expression of several genes associated with metabolism, stress and immunity within gills of juvenile turbot (Psetta maxima) after an eight-week exposure to different concentrations of CO2 (low = ∼3000 µatm, medium = ∼15,000 µatm and high = ∼25,000 µatm CO2). Histological examination of the gill tissue only found a significant increase of hypertrophied secondary lamella in the highest tested treatment level. gene expression results, on the other hand, implied both, mutual and dose-dependent transcriptional adjustments. Comparable up-regulation of IL-1ß, LMP7 and Grim19 at medium and high hypercapnia indicated an increase of reactive oxygen species (ROS) within gill cells. Simultaneous increase in Akirin and PRDX transcripts at medium CO2 indicated enhanced anti-oxidant activity and regulation of transcription, while reduced mRNA concentrations of COX, EF1α and STAT2 at high CO2 denoted suppressed protein synthesis and reduced metabolic capacity. In addition to upregulated DFAD and ApoE expression, implying compensating repair measures, gills exposed to the highest tested treatment level seemed to operate close to or even beyond their maximum capacity. Thus, fitting the model of capacity limitation, our results provide evidence for accretive intracellular hypoxia and oxidative stress in the gills of turbot, dependent on the level of environmental hypercapnia. Further, genes, such as COX, may be valuable biomarkers when attempting to discriminate between a successful and an overpowered stress response.


Asunto(s)
Dióxido de Carbono/toxicidad , Hipoxia de la Célula/efectos de los fármacos , Exposición a Riesgos Ambientales , Peces Planos/fisiología , Expresión Génica/efectos de los fármacos , Branquias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Acuicultura , Dióxido de Carbono/sangre , Peces Planos/genética
19.
Front Nutr ; 5: 106, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30488034

RESUMEN

This study aimed to evaluate whether resveratrol (RSV) and its microbial metabolites dihydro-resveratrol (DHR) and lunularin (LUN) affected fatty acid metabolism and omega-3 polyunsaturated fatty acid (n3-PUFA) synthesis in cultured hepatocytes. To this end, cultured human HepG2 hepatocytes were treated with non-toxic concentrations of these polyphenols (40 µM) and Δ5- and Δ6-desaturase (FADS1 and FADS2, respectively) expression was measured. Resveratrol induced both genes but DHR and LUN showed no effect. Co-incubation of RSV with α-linolenic acid (ALA) also induced FADS1 and FADS2 expression. Moreover, transcription of carnitine palmitoyltransferase 1A and fatty acid synthase expression was increased, indicating induction of ß-oxidation and fatty acid synthesis, respectively. Using gas chromatography to measure fatty acid levels, we observed the impact of RSV with and without ALA treatment on fatty acid composition. However, RSV reduced unsaturated while increasing saturated fatty acid levels. We found lower amounts of monounsaturated fatty acids (16:1n-7c, 18:1n-9c, 18:1n7c, and 20:1n-9) and n3-PUFA docosahexaenoic acid whereas unsaturated fatty acid levels, especially of stearic acid, were elevated. Of interest, once we co-incubated the cells with RSV together with bovine serum albumin, we found no differences in gene expression compared to cells without RSV treatment. Although we found no positive effect of RSV on n3-PUFA synthesis, the stilbene could possibly prevent cellular stress by decreasing unsaturated fatty acid levels.

20.
Mar Drugs ; 16(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30309000

RESUMEN

To sustainably produce marine fish with a high lipid quality rich in omega-3 fatty acids, alternative sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are being identified. Moreover, the use of bioactive compounds that would stimulate the in vivo fatty acid synthesis, such as resveratrol (RV), would reduce the dependence on fish oil in aquafeeds. Gilthead sea bream (Sparus aurata) were fed four experimental diets combining two fish oil levels (6% dry matter (DM); 2% DM) with or without 0.15% DM resveratrol supplementation (F6, F2, F6 + RV, F2 + RV) for two months. Additionally, the fish were challenged either at 19 °C or 23 °C. A higher water temperature promoted their feed intake and growth, resulting in an increased crude lipid content irrespective of dietary treatment. The fatty acid composition of different tissues was significantly affected by the holding temperature and dietary fish oil level. The dietary RV significantly affected the hepatic EPA and DHA content of fish held at 19 °C. The observed effect of RV may be partly explained by alterations of the mRNA steady-state levels of ∆6-desaturase and ß-oxidation-related genes. Besides the relevant results concerning RV-mediated regulation of fatty acid synthesis in marine fish, further studies need to be conducted to clarify the potential value of RV to enhance fillet lipid quality.


Asunto(s)
Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Aceites de Pescado/farmacología , Expresión Génica/efectos de los fármacos , Resveratrol/farmacología , Dorada/metabolismo , Alimentación Animal , Animales , Dieta/métodos , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos Omega-3/metabolismo , Expresión Génica/genética , Dorada/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...