Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Neurosurg Rev ; 47(1): 65, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265724

RESUMEN

OBJECTIVE: The extent of resection and neurological outcome are important prognostic markers for overall survival in glioma patients. Confocal laser endomicroscopy is a tool to examine tissue without the need for fixation or staining. This study aims to analyze gliomas in confocal laser endomicroscopy and identify reliable diagnostic criteria for glial matter and glial tumors. MATERIAL AND METHODS: One-hundred-and-five glioma specimens were analyzed using a 670-nm confocal laser endomicroscope and then processed into hematoxylin-eosin-stained frozen sections. All confocal images and frozen sections were evaluated for the following criteria: presence of tumor, cellularity, nuclear pleomorphism, changes of the extracellular glial matrix, microvascular proliferation, necrosis, and mitotic activity. Recurring characteristics were identified. Accuracy, sensitivity, specificity, and positive and negative predictive values were assessed for each feature. RESULTS: All 125 specimens could be processed and successfully analyzed via confocal laser endomicroscopy. We found diagnostic criteria to identify white and grey matter and analyze cellularity, nuclear pleomorphism, changes in the glial matrix, vascularization, and necrosis in glial tumors. An accuracy of > 90.0 % was reached for grey matter, cellularity, and necrosis, > 80.0 % for white matter and nuclear pleomorphism, and > 70.0 % for microvascular proliferation and changes of the glial matrix. Mitotic activity could not be identified. Astroglial tumors showed significantly less nuclear pleomorphism in confocal laser endomicroscopy than oligodendroglial tumors (p < 0.001). Visualization of necrosis aids in the differentiation of low grade gliomas and high grade gliomas  (p < 0.002). CONCLUSION: Autofluorescence-based confocal laser endomicroscopy proved not only useful in differentiation between tumor and brain tissue but also revealed useful clues to further characterize tissue without processing in a lab. Possible applications include the improvement of extent of resection and the safe harvest of representative tissue for histopathological and molecular genetic diagnostics.


Asunto(s)
Glioma , Recurrencia Local de Neoplasia , Humanos , Endoscopía , Corteza Cerebral , Necrosis
2.
Cancers (Basel) ; 15(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37627124

RESUMEN

ARID1A is a subunit of the mammalian SWI/SNF complex, which is thought to regulate gene expression through restructuring chromatin structures. Its gene ARID1A is frequently mutated and ARID1A levels are lowered in several human cancers, especially gynecologic ones. A functional ARID1A loss may have prognostic or predictive value in terms of therapeutic strategies but has not been proposed based on a quantitative method. Hardly any literature is available on ARID1A levels in tumor samples. We developed an indirect enzyme-linked immunosorbent assay (ELISA) for ARID1A based on the current EMA and FDA criteria. We demonstrated that our ELISA provides the objective, accurate, and precise quantification of ARID1A concentrations in recombinant protein solutions, cell culture standards, and tissue lysates of tumors. A standard curve analysis yielded a 'goodness of fit' of R2 = 0.99. Standards measured on several plates and days achieved an inter-assay accuracy of 90.26% and an inter-assay precision with a coefficient of variation of 4.53%. When tumor lysates were prepared and measured multiple times, our method had an inter-assay precision with a coefficient of variation of 11.78%. We believe that our suggested method ensures a high reproducibility and can be used for a high sample throughput to determine the ARID1A concentration in different tumor entities. The application of our ELISA on various tumor and control tissues will allow us to explore whether quantitative ARID1A measurements in tumor samples are of predictive value.

3.
Front Neurol ; 14: 1229641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521293

RESUMEN

Introduction: This study aimed to investigate microglial and macrophage activation in 17 patients who died in the context of a COVID-19 infection in 2020 and 2021. Methods: Through immunohistochemical analysis, the lysosomal marker CD68 was used to detect diffuse parenchymal microglial activity, pronounced perivascular macrophage activation and macrophage clusters. COVID-19 patients were compared to control patients and grouped regarding clinical aspects. Detection of viral proteins was attempted in different regions through multiple commercially available antibodies. Results: Microglial and macrophage activation was most pronounced in the white matter with emphasis in brain stem and cerebellar areas. Analysis of lesion patterns yielded no correlation between disease severity and neuropathological changes. Occurrence of macrophage clusters could not be associated with a severe course of disease or preconditions but represent a more advanced stage of microglial and macrophage activation. Severe neuropathological changes in COVID-19 were comparable to severe Influenza. Hypoxic damage was not a confounder to the described neuropathology. The macrophage/microglia reaction was less pronounced in post COVID-19 patients, but detectable i.e. in the brain stem. Commercially available antibodies for detection of SARS-CoV-2 virus material in immunohistochemistry yielded no specific signal over controls. Conclusion: The presented microglial and macrophage activation might be an explanation for the long COVID syndrome.

4.
Radiologie (Heidelb) ; 63(8): 577-582, 2023 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-37477671

RESUMEN

BACKGROUND: Already with the update of the 4th edition of the World Health Organization (WHO) classification of tumors of the central nervous system, it was pointed out that pediatric diffuse glioma do not follow the same molecular mechanisms used to characterize adult diffuse glioma. OBJECTIVES: What changes result from the update of the classification of tumors of the central nervous system? METHODS: With the 5th edition of the WHO classification of tumors of the central nervous system, a second level of information containing molecular changes besides the histological characterization and grading of tumors was established. RESULTS: A new classification of diffuse pediatric brain tumors based on molecular tumor pathways was established. The most important tumor pathways, considered for the new classification, were the activation of receptor tyrosine kinases and histone H3 alterations that cause epigenetic changes. CONCLUSIONS: Increasingly better understanding of mechanisms in the development of pediatric brain tumors gives hope for more specific therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Adulto , Humanos , Niño , Neoplasias del Sistema Nervioso Central/patología , Neoplasias Encefálicas/patología , Glioma/patología , Sistema Nervioso Central/patología , Organización Mundial de la Salud
5.
Cancer Med ; 12(7): 8433-8444, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36583475

RESUMEN

INTRODUCTION: Meningiomas are mostly benign neoplasms of the central nervous system. Nevertheless there are recurrences in about 20% after surgical resection. Previous studies could reveal several predictors of meningioma recurrence. Tumor progression often is associated with a specific pattern of chromosome losses. Our study investigated the potential function of selected microRNAs as markers of tumor progression. METHODS: By real-time polymerase chain reaction the expressions of microRNA 21-3p, 34a-3p, 200a-3p, and 409-3p were analyzed in solid tumor and in blood samples of 51 meningioma patients as well as in blood samples of 20 healthy individuals. Additionally, aberrations of parts of chromosomes 1, 14, 18, and 22 were analyzed by FISH. Tumor and blood samples were statistically analyzed, using Spearman's rank correlation coefficient as well as Mann-Whitney U- and Kruskal-Wallis-Test. RESULTS: MicroRNA 200a showed significantly lower expressions in recurrent meningiomas than in newly diagnosed ones. MicroRNA 409 in meningiomas was correlated significantly with tumor volume and showed a significant negative correlation with patient age. Significance was found between the expression patterns of microRNAs 34a and 200a with the respective aberrations of chromosome 1p and the microRNA 409 with aberration of chromosome 14. In the male cohort the expression of microRNA 200a in blood was significantly upregulated in patients compared to healthy volunteers. By our research the function of microRNA 200a was proved to detect meningioma patients by liquid biopsy. CONCLUSION: We detected microRNA 200a as a new biomarker to indicate meningioma recurrences. Future transferability to blood could be important for patient follow-up.


Asunto(s)
Neoplasias Meníngeas , Meningioma , MicroARNs , Masculino , Humanos , Meningioma/genética , Meningioma/patología , MicroARNs/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Recurrencia Local de Neoplasia/genética , Deleción Cromosómica
6.
Hormones (Athens) ; 21(4): 653-663, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35947342

RESUMEN

PURPOSE/OBJECTIVE: Multiple tumorous lesions in one pituitary gland are rare and mostly described in case reports. Their incidences and combinations are defined in larger collectives. Therefore, we analyzed our large collection for double tumors and combinations of tumors, cysts, and inflammation. METHODS: The German Registry of Pituitary Tumors, including cases from 1990 to 2018, served as the database. Our collection comprises a total of 16,283 cases up until the end of 2018. Of these cases, 12,673 originated from surgical and 3,610 from autopsy material. All specimens were fixed in formalin and embedded in paraffin. The sections were stained with hematoxylin-eosin and PAS. Monoclonal (prolactin, TSH, FSH, LH, and α subunit) or polyclonal (GH and ACTH) antibodies were used to detect pituitary hormones in the lesions. Since 2017, antibodies against the transcription factors Pit-1, T-Pit, and SF-1 have been used in difficult cases. The criteria of the 2017 WHO classification have been basic principles for classification since 2018 (Osamura et al. 2017). For differentiation of other sellar tumors, such as meningiomas, chordomas, or metastases, the use of additional antibodies was necessary. For these cases, it was possible to use a broad antibody spectrum. Autopsy pituitaries were generally studied by H&E and PAS sections. If any lesions were demonstrated in these specimens, additional immunostaining was performed. RESULTS: Multiple tumorous lesions with more than one pituitary neuroendocrine tumor (PitNET) respectively adenoma make up 1.4% (232 cases) in our collection. Within the selected cases, synchronous multiple pituitary neuroendocrine tumors (PitNETs) account for 17.3%, PANCH cases (pituitary adenoma with neuronal choristoma) for 14.7%, PitNETs and posterior lobe tumors for 2.2%, PitNETs and metastases for 5.2%, PitNETs and mesenchymal tumors for 2.6%, PitNETs and cysts for 52.2%, and PitNETs and primary inflammation for 6.0%. The mean patient age was 53.8 years, with a standard deviation of 18.5 years. A total of 55.3% of the patients were female and 44.7% were male. From 1990 to 2018, there was a continuous increase in the number of multiple tumorous lesions. CONCLUSION: From our studies, we conclude that considering possible tumorous double lesions during surgeries and in preoperative X-ray analyses is recommended.


Asunto(s)
Adenoma , Quistes , Neoplasias Primarias Múltiples , Tumores Neuroendocrinos , Enfermedades de la Hipófisis , Neoplasias Hipofisarias , Humanos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/patología , Hipófisis/patología , Adenoma/patología , Tumores Neuroendocrinos/patología , Neoplasias Primarias Múltiples/patología , Inflamación
7.
Clin Epigenetics ; 14(1): 26, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35180887

RESUMEN

BACKGROUND: Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. RESULTS: To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350-1354, 2000. https://doi.org/10.1056/NEJM200011093431901 ) and Felsberg et al. (Clin Cancer Res 15(21):6683-6693, 2009. https://doi.org/10.1158/1078-0432.CCR-08-2801 ) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. CONCLUSION: Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patología , Humanos , O(6)-Metilguanina-ADN Metiltransferasa/genética , Sulfitos , Proteínas Supresoras de Tumor/genética
8.
Nature ; 603(7903): 885-892, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35165441

RESUMEN

The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms-the blood-brain barrier-impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer's disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer's disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer's disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer's disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Susceptibilidad a Enfermedades , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/metabolismo , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Estudio de Asociación del Genoma Completo , Hipocampo/irrigación sanguínea , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Microglía/metabolismo , Pericitos/metabolismo , Transcriptoma
9.
J Neurointerv Surg ; 14(3): 286-290, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33947771

RESUMEN

BACKGROUND: Recently, liquid embolic agents have emerged for the endovascular treatment of cerebral aneurysms. Here we describe the in vivo performance of a novel liquid embolization agent (GPX Embolic Device). METHODS: Elastase-induced aneurysms were embolized with a GPX prototype under balloon assistance. Digital subtraction angiography was performed pre-deployment and immediately after, and at 5, 10, and 30 min post-deployment in 10 rabbits and at 1 month in 8 rabbits. The early post-deployment intra-aneurysmal flow was graded as unchanged, moderately diminished, or completely absent. At 1 month the status of aneurysm occlusion was evaluated. Adhesion to catheter material and migration of GPX was assessed. RESULTS: The mean aneurysm neck diameter, width, and height were 3.6±1.0 mm, 3.0±0.8 mm, and 7.4±1.4 mm, respectively. The mean dome-to-neck ratio was 0.9±0.2. Complete stagnation of intra-aneurysmal flow was observed in 9 of 10 aneurysms (90%) within 30 min of device deployment. One aneurysm showed moderately diminished intra-aneurysmal flow at 30 min. At 1 month, 8 aneurysms were completely occluded. There was no evidence of GPX adhesion to the catheter material. Histologically, a leukocyte and foreign body reaction to GPX was detectable 28 days after embolization. CONCLUSIONS: This is the first preclinical study reporting the performance of a protype version of the GPX Embolic Device in a wide-neck aneurysm model. GPX showed promising results by achieving and maintaining high rates of complete angiographic occlusion, but may induce an inflammatory reaction.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Angiografía de Substracción Digital , Animales , Angiografía Cerebral , Modelos Animales de Enfermedad , Embolización Terapéutica/métodos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/terapia , Conejos , Resultado del Tratamiento
10.
Acta Neuropathol Commun ; 9(1): 187, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819156

RESUMEN

In sporadic Creutzfeldt-Jakob disease (sCJD), the pathological changes appear to be restricted to the central nervous system. Only involvement of the trigeminal ganglion is widely accepted. The present study systematically examined the involvement of peripheral ganglia in sCJD utilizing the currently most sensitive technique for detecting prions in tissue morphologically. The trigeminal, nodose, stellate, and celiac ganglia, as well as ganglia of the cervical, thoracic and lumbar sympathetic trunk of 40 patients were analyzed with the paraffin-embedded tissue (PET)-blot method. Apart from the trigeminal ganglion, which contained protein aggregates in five of 19 prion type 1 patients, evidence of prion protein aggregation was only found in patients associated with type 2 prions. With the PET-blot, aggregates of prion protein type 2 were found in all trigeminal (17/17), in some nodose (5 of 7) and thoracic (3 of 6) ganglia, as well as in a few celiac (4 of 19) and lumbar (1 of 5) ganglia of sCJD patients. Whereas aggregates of both prion types may spread to dorsal root ganglia, more CNS-distant ganglia seem to be only involved in patients accumulating prion type 2. Whether the prion type association is due to selection by prion type-dependent replication, or due to a prion type-dependent property of axonal spread remains to be resolved in further studies.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Ganglio del Trigémino/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Ganglios Simpáticos/metabolismo , Ganglios Simpáticos/patología , Humanos , Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Enfermedades por Prión/patología , Ganglio del Trigémino/patología
12.
Nature ; 595(7868): 565-571, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34153974

RESUMEN

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Asunto(s)
Astrocitos/patología , Encéfalo/patología , COVID-19/diagnóstico , COVID-19/patología , Plexo Coroideo/patología , Microglía/patología , Neuronas/patología , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/virología , COVID-19/genética , COVID-19/fisiopatología , Núcleo Celular/genética , Plexo Coroideo/metabolismo , Plexo Coroideo/fisiopatología , Plexo Coroideo/virología , Femenino , Humanos , Inflamación/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Transcriptoma , Replicación Viral
14.
Acta Neuropathol ; 141(6): 861-879, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33895878

RESUMEN

Cerebral deposition of abnormally aggregated α-synuclein (αSyn) is a neuropathological hallmark of Parkinson's disease (PD). PD-associated αSyn (αSynPD) aggregates can act as proteinaceous nuclei ("seeds") able of self-templated propagation. Since this is strikingly reminiscent to properties of proteinaceous infectious particles (prions), lessons learned from prion diseases suggest to test whether transferred αSynPD can propagate and induce neurological impairments or disease in a new host. Two studies that addressed this question provided divergent results. Intracerebral (i.c.) injection of Lewy body extracts from PD patients caused cerebral αSyn pathology, as well as nigrostriatal neurodegeneration, of wild-type mice and macaques, with the mice also showing motor impairments (Recasens et al. 2014, Ann Neurol 75:351-362). In contrast, i.c. transmission of homogenates from PD brains did not stimulate, after "> 360" days post-injection (dpi), pathological αSyn conversion or clinical symptoms in transgenic TgM83+/- mice hemizygously expressing mutated (A53T) human αSyn (Prusiner et al. 2015, PNAS 112:E5308-E5317). To advance the assessment of possible αSynPD hazards by providing further data, we examined neuropathological and clinical effects upon i.c. transmission of brain, stomach wall and muscle tissue as well as blood from PD patients in TgM83+/- mice up to 612 dpi. This revealed a subtle, yet distinctive stimulation of localized αSyn aggregation in the somatodendritic compartment and dystrophic neurites of individual or focally clustered cerebral neurons after challenge with brain and stomach wall homogenates. No such effect was observed with transmitted blood or homogenized muscle tissue. The detected stimulation of αSyn aggregation was not accompanied by apparent motor impairments or overt neurological disease in TgM83+/- mice. Our study substantiated that transmitted αSynPD seeds, including those from the stomach wall, are able to propagate in new mammalian hosts. The consequences of such propagation and potential safeguards need to be further investigated.


Asunto(s)
Encéfalo/patología , Sistema Nervioso Entérico/patología , Cuerpos de Lewy/patología , Neuronas/patología , Enfermedad de Parkinson , Estómago/patología , alfa-Sinucleína , Animales , Humanos , Ratones , Músculo Esquelético/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Priones , alfa-Sinucleína/administración & dosificación , alfa-Sinucleína/sangre , alfa-Sinucleína/aislamiento & purificación , alfa-Sinucleína/metabolismo
15.
Nat Neurosci ; 24(2): 168-175, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33257876

RESUMEN

The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.


Asunto(s)
Encéfalo/virología , COVID-19/virología , Mucosa Olfatoria/virología , SARS-CoV-2/patogenicidad , Sistema Nervioso Central , Humanos , ARN Viral/genética , Olfato/fisiología , Internalización del Virus
17.
Vet Res ; 51(1): 82, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552868

RESUMEN

In a study originally designed to find potential risk factors for bovine spongiform encephalopathy (BSE) we examined tissues from 403 Holstein Frisian cattle in total. These included 20 BSE cattle and their 236 birth- and feeding cohort animals plus 32 offspring, 103 age, breed and district-matched control cattle and further twelve cattle with neurological signs. In addition to the obex, we examined the celiac ganglion, cervical cranial ganglion, trigeminal ganglion and proximal ganglion of the vagus nerve using histological techniques. Unexpectedly, we found a high number of neurofibroma, a benign peripheral nerve sheath tumor consisting of Schwann cells, fibroblasts and perineural cells. The neurofibroma were present only in the celiac ganglion and found during histologic examination. With a frequency of 9.91% in BSE cattle and their cohorts (case animals) and 9.09% in the age, breed and district matched control animals there seems to be no correlation between the occurrence of BSE and neurofibroma. Benign peripheral nerve sheath tumors have been described more often in cattle than in other domestic animals. Usually, they are incidental macroscopic findings in the thoracic ganglia during meat inspection. To our knowledge, there are no previous systematic histologic studies including bovine celiac ganglia at all. The high incidence of celiac ganglia neurofibroma may play a role in the frequently occurring abomasal displacements in Holstein Frisian cattle as the tumors might cause a gastrointestinal motility disorder. At present a genetic predisposition for these neoplasms cannot be ruled out.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Ganglios Simpáticos/patología , Neurofibroma/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/etiología , Estudios de Cohortes , Femenino , Alemania/epidemiología , Incidencia , Masculino , Neurofibroma/epidemiología , Neurofibroma/etiología , Factores de Riesgo
18.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835809

RESUMEN

Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can't achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients.


Asunto(s)
Lipogranulomatosis de Farber/enzimología , Esfingomielina Fosfodiesterasa/deficiencia , Ceramidasa Ácida/metabolismo , Amitriptilina/farmacología , Animales , Ceramidas/metabolismo , Citocinas/metabolismo , Lipogranulomatosis de Farber/patología , Ratones Endogámicos C57BL , Esfingomielina Fosfodiesterasa/metabolismo , Análisis de Supervivencia , Aumento de Peso/efectos de los fármacos
19.
Stroke ; 49(8): 1988-1991, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30002148

RESUMEN

Background and Purpose- This pilot study aims to demonstrate the feasibility of targeting molecular characteristics of high-risk atherosclerotic plaque in symptomatic and asymptomatic carotid stenosis (CS), that is, upregulation of the translocator protein (TSPO) and the chemokine receptor type 4 (CXCR4), by means of molecular imaging. Methods- In a translational setting, specimens of carotid plaques of patients with symptomatic and asymptomatic CS obtained by carotid endarterectomy were analyzed for the presence of TSPO and CXCR4 by autoradiography, using the positron emission tomography tracers 18F-GE180 and 68Ga-Pentixafor and evaluated by histopathology. In addition, 68Ga-Pentixafor positron emission tomography/computed tomography was performed in a patient with high-grade CS. Results- Distinct patterns of upregulation of TSPO (18F-GE180 uptake) and CXCR4 (68Ga-Pentixafor uptake) were identified in carotid plaque by autoradiography. The spatial distribution was associated with specific histological hallmarks that are established features of high-risk plaque: TSPO upregulation correlated with activated macrophages infiltration, whereas CXCR4 upregulation also corresponded to areas of intraplaque hemorrhage. 68Ga-Pentixafor uptake was significantly higher in plaques of symptomatic compared with asymptomatic CS. Clinical positron emission tomography revealed marked 68Ga-Pentixafor uptake in carotid plaque of a patient with high-grade CS. Conclusions- Clinical imaging of molecular signatures of high-risk atherosclerotic plaque is feasible and may become a promising diagnostic tool for comprehensive characterization of carotid disease. This methodology provides a platform for future studies targeting carotid plaque.


Asunto(s)
Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/metabolismo , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/metabolismo , Receptores CXCR4/metabolismo , Receptores de GABA/metabolismo , Anciano , Anciano de 80 o más Años , Autorradiografía/métodos , Femenino , Humanos , Masculino , Proyectos Piloto , Receptores CXCR4/análisis , Receptores de GABA/análisis , Factores de Riesgo
20.
Biol Chem ; 399(10): 1183-1202, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29908121

RESUMEN

Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1tmEx1 mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.


Asunto(s)
Modelos Animales de Enfermedad , Lipogranulomatosis de Farber/patología , Animales , Ceramidas/análisis , Ceramidas/metabolismo , Cromatografía Liquida , Lipogranulomatosis de Farber/metabolismo , Ratones , Ratones Endogámicos C57BL , Esfingomielinas/análisis , Esfingomielinas/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...