Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 12(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36143382

RESUMEN

Over the past years, NGS has become a crucial workhorse for open-view pathogen diagnostics. Yet, long turnaround times result from using massively parallel high-throughput technologies as the analysis can only be performed after sequencing has finished. The interpretation of results can further be challenged by contaminations, clinically irrelevant sequences, and the sheer amount and complexity of the data. We implemented PathoLive, a real-time diagnostics pipeline for the detection of pathogens from clinical samples hours before sequencing has finished. Based on real-time alignment with HiLive2, mappings are scored with respect to common contaminations, low-entropy areas, and sequences of widespread, non-pathogenic organisms. The results are visualized using an interactive taxonomic tree that provides an easily interpretable overview of the relevance of hits. For a human plasma sample that was spiked in vitro with six pathogenic viruses, all agents were clearly detected after only 40 of 200 sequencing cycles. For a real-world sample from Sudan, the results correctly indicated the presence of Crimean-Congo hemorrhagic fever virus. In a second real-world dataset from the 2019 SARS-CoV-2 outbreak in Wuhan, we found the presence of a SARS coronavirus as the most relevant hit without the novel virus reference genome being included in the database. For all samples, clinically irrelevant hits were correctly de-emphasized. Our approach is valuable to obtain fast and accurate NGS-based pathogen identifications and correctly prioritize and visualize them based on their clinical significance: PathoLive is open source and available on GitLab and BioConda.

2.
Bioinformatics ; 33(6): 917-319, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27794555

RESUMEN

Motivation: Next Generation Sequencing is increasingly used in time critical, clinical applications. While read mapping algorithms have always been optimized for speed, they follow a sequential paradigm and only start after finishing of the sequencing run and conversion of files. Since Illumina machines write intermediate output results, HiLive performs read mapping while still sequencing and thereby drastically reduces crucial overall sample analysis time, e.g. in precision medicine. Methods: We present HiLive as a novel real time read mapper that implements a k-mer based alignment strategy. HiLive continuously reads intermediate BCL files produced by Illumina sequencers and then extends initial k-mer matches by increasingly produced data from the sequencer. Results: We applied HiLive on real human transcriptome data to show that final read alignments are reported within few minutes after the end of a full Illumina HiSeq 1500 run, while already the necessary conversion to FASTQ files as the standard input to current read mapping methods takes roughly five times as long. Further, we show on simulated and real data that HiLive has comparable accuracy to recent read mappers. Availability and Implementation: HiLive and its source code are freely available from https://gitlab.com/SimonHTausch/HiLive . Contact: renardB@rki.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Algoritmos , Genoma Humano , Humanos , Transcriptoma
3.
PLoS Curr ; 62014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24987574

RESUMEN

While initial phylogenetic analyses concluded to Guinea 2014 EBOV falling outside the Zaïre lineage (ZEBOV), a recent re-analysis of the same dataset by Dudas and Rambaut (2014) suggested that Guinea 2014 EBOV actually is ZEBOV. Under the same hypothesis as used by these authors (the molecular clock hypothesis), we reinforce their conclusion by providing a statistical assessment of the location of the root of the Zaïre lineage. Our analysis unambiguously supports Guinea 2014 EBOV as a member of the Zaïre lineage. In addition, we also show that some uncertainty exists so as to the location of the root of the genus Ebolavirus. We release the software we used for these re-analyses. RootAnnotator allows for the easy determination of branch root posterior probability from any posterior sample of clocked trees and is freely available at http://sourceforge.net/projects/rootannotator/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA