Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(8): 4228-4235, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38357880

RESUMEN

Simple synthetic and natural hydrogels can be formulated to have elastic moduli that match biological tissues, leading to their widespread application as model systems for tissue engineering, medical device development, and drug delivery vehicles. However, two different hydrogels having the same elastic modulus but differing in microstructure or nanostructure can exhibit drastically different mechanical responses, including their poroelasticity, lubricity, and load bearing capabilities. Here, we investigate the mechanical response of collagen-1 networks to local and bulk compressive loads. We compare these results to the behavior of polyacrylamide, a fundamentally different class of hydrogel network consisting of flexible polymer chains. We find that the high bending rigidity of collagen fibers, which suppresses entropic bending fluctuations and osmotic pressure, facilitates the bulk compression of collagen networks under infinitesimal applied stress. These results are fundamentally different from the behavior of flexible polymer networks in which the entropic thermal fluctuations of the polymer chains result in an osmotic pressure that must first be overcome before bulk compression can occur. Furthermore, we observe minimal transverse strain during the axial loading of collagen networks, a behavior reminiscent of open-celled cellular solids. Inspired by these results, we applied mechanical models of cellular solids to predict the elastic moduli of the collagen networks and found agreement with the moduli values measured through contact indentation. Collectively, these results suggest that unlike flexible polymer networks that are often considered incompressible, collagen hydrogels behave like rigid porous solids that volumetrically compress and expel water rather than spreading laterally under applied normal loads.


Asunto(s)
Colágeno , Matriz Extracelular , Presión , Módulo de Elasticidad , Colágeno/química , Polímeros , Hidrogeles/química , Estrés Mecánico
2.
Nat Commun ; 10(1): 3029, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292444

RESUMEN

With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future.


Asunto(s)
Bioimpresión/métodos , Técnicas de Cultivo de Célula/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Resinas Acrílicas/química , Animales , Materiales Biocompatibles , Línea Celular Tumoral , Matriz Extracelular , Geles/química , Ensayo de Materiales , Metacrilatos/química , Ratones , Células 3T3 NIH
3.
Sci Adv ; 3(5): e1602800, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508071

RESUMEN

The widespread prevalence of commercial products made from microgels illustrates the immense practical value of harnessing the jamming transition; there are countless ways to use soft, solid materials that fluidize and become solid again with small variations in applied stress. The traditional routes of microgel synthesis produce materials that predominantly swell in aqueous solvents or, less often, in aggressive organic solvents, constraining ways that these exceptionally useful materials can be used. For example, aqueous microgels have been used as the foundation of three-dimensional (3D) bioprinting applications, yet the incompatibility of available microgels with nonpolar liquids, such as oils, limits their use in 3D printing with oil-based materials, such as silicone. We present a method to make micro-organogels swollen in mineral oil, using block copolymer self-assembly. The rheological properties of this micro-organogel material can be tuned, leveraging the jamming transition to facilitate its use in 3D printing of silicone structures. We find that the minimum printed feature size can be controlled by the yield stress of the micro-organogel medium, enabling the fabrication of numerous complex silicone structures, including branched perfusable networks and functional fluid pumps.

4.
ACS Biomater Sci Eng ; 2(10): 1796-1799, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33440477

RESUMEN

Fluid instabilities limit the ability of features to hold their shape in many types of 3D printing as liquid inks solidify into written structures. By 3D printing directly into a continuum of jammed granular microgels, these instabilities are circumvented by eliminating surface tension and body forces. However, this type of 3D printing process is potentially limited by inertial instabilities if performed at high speeds where turbulence may destroy features as they are written. Here, we design and test a high-speed 3D printing experimental system to identify the instabilities that arise when an injection nozzle translates at 1 m/s. We find that the viscosity of the injected material can control the Reynold's instability, and we discover an additional, unanticipated instability near the top surface of the granular microgel medium.

5.
Proc Inst Mech Eng H ; 229(12): 889-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26614802

RESUMEN

The exquisite sliding interfaces in the human body share the common feature of hydrated dilute polymer mesh networks. These networks, especially when they constitute a sliding interface such as the pre-corneal tear film on the ocular interface, are described by the molecular weight of the polymer chains and a characteristic size of a minimum structural unit, the mesh size, ξ. In a Gemini interface where hydrophilic hydrogels are slid against each other, the aqueous lubrication behavior has been shown to be a function of sliding velocity, introducing a sliding timescale competing against the time scales of polymer fluctuation and relaxation at the surface. In this work, we examine two recent studies and postulate that when the Gemini interface slips faster than the single-chain relaxation time, chains must relax, suppressing the amplitude of the polymer chain thermal fluctuations.


Asunto(s)
Hidrogeles/química , Lubricantes/química , Lubrificación , Modelos Biológicos , Resinas Acrílicas/química , Segmento Anterior del Ojo/fisiología , Párpados/fisiología , Fricción , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Lágrimas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA