Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Science ; 384(6697): 785-792, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38753784

RESUMEN

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Asunto(s)
Apoptosis , Daño del ADN , Biosíntesis de Proteínas , Ribosomas , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ribosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Leucina/farmacología , Proteínas Represoras , Proteínas Reguladoras de la Apoptosis
2.
Cancer Discov ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563906

RESUMEN

IL-2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, while others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL-2 to CD8+ T cells, which are key anti-tumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, CD8 cis-targeted IL-2 that demonstrates over 500-fold preference for CD8+ T cells over NK and Treg cells, which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL-2's effects on CD8+ T cells in vitro and induced selective expansion of CD8+ T cells in primates. In mice, an AB248 surrogate demonstrated superior anti-tumor activity and enhanced tolerability as compared to an untargeted IL-2RBy agonist. Efficacy was associated with expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a "better effector" population. These data support the potential utility of AB248 in clinical settings.

3.
Cancer Discov ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563969

RESUMEN

Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune checkpoint blockade can restore antitumor T cell function in some patients, however most do not respond to this therapy, often despite T cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for cancer patients.

4.
Nat Biotechnol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653798

RESUMEN

T cell receptor (TCR) gene therapy is a potent form of cellular immunotherapy in which patient T cells are genetically engineered to express TCRs with defined tumor reactivity. However, the isolation of therapeutic TCRs is complicated by both the general scarcity of tumor-specific T cells among patient T cell repertoires and the patient-specific nature of T cell epitopes expressed on tumors. Here we describe a high-throughput, personalized TCR discovery pipeline that enables the assembly of complex synthetic TCR libraries in a one-pot reaction, followed by pooled expression in reporter T cells and functional genetic screening against patient-derived tumor or antigen-presenting cells. We applied the method to screen thousands of tumor-infiltrating lymphocyte (TIL)-derived TCRs from multiple patients and identified dozens of CD4+ and CD8+ T-cell-derived TCRs with potent tumor reactivity, including TCRs that recognized patient-specific neoantigens.

6.
Nat Med ; 30(2): 519-530, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191613

RESUMEN

Gastric and gastroesophageal junction (G/GEJ) cancers carry a poor prognosis, and despite recent advancements, most patients die of their disease. Although immune checkpoint blockade became part of the standard-of-care for patients with metastatic G/GEJ cancers, its efficacy and impact on the tumor microenvironment (TME) in early disease remain largely unknown. We hypothesized higher efficacy of neoadjuvant immunotherapy plus chemotherapy in patients with nonmetastatic G/GEJ cancer. In the phase 2 PANDA trial, patients with previously untreated resectable G/GEJ tumors (n = 21) received neoadjuvant treatment with one cycle of atezolizumab monotherapy followed by four cycles of atezolizumab plus docetaxel, oxaliplatin and capecitabine. Treatment was well tolerated. There were grade 3 immune-related adverse events in two of 20 patients (10%) but no grade 4 or 5 immune-related adverse events, and all patients underwent resection without treatment-related delays, meeting the primary endpoint of safety and feasibility. Tissue was obtained at multiple time points, allowing analysis of the effects of single-agent anti-programmed cell death ligand 1 (PD-L1) and the subsequent combination with chemotherapy on the TME. Twenty of 21 patients underwent surgery and were evaluable for secondary pathologic response and survival endpoints, and 19 were evaluable for exploratory translational analyses. A major pathologic response (≤10% residual viable tumor) was observed in 14 of 20 (70%, 95% confidence interval 46-88%) patients, including 9 (45%, 95% confidence interval 23-68%) pathologic complete responses. At a median follow-up of 47 months, 13 of 14 responders were alive and disease-free, and five of six nonresponders had died as a result of recurrence. Notably, baseline anti-programmed cell death protein 1 (PD-1)+CD8+ T cell infiltration was significantly higher in responders versus nonresponders, and comparison of TME alterations following anti-PD-L1 monotherapy versus the subsequent combination with chemotherapy showed an increased immune activation on single-agent PD-1/L1 axis blockade. On the basis of these data, monotherapy anti-PD-L1 before its combination with chemotherapy warrants further exploration and validation in a larger cohort of patients with nonmetastatic G/GEJ cancer. ClinicalTrials.gov registration: NCT03448835 .


Asunto(s)
Adenocarcinoma , Anticuerpos Monoclonales Humanizados , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Terapia Neoadyuvante , Receptor de Muerte Celular Programada 1 , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Unión Esofagogástrica/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Microambiente Tumoral
7.
Cancer Cell ; 42(1): 157-167.e9, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194914

RESUMEN

Cells in the tumor microenvironment (TME) influence each other through secretion and sensing of soluble mediators, such as cytokines and chemokines. While signaling of interferon γ (IFNγ) and tumor necrosis factor α (TNFα) is integral to anti-tumor immune responses, our understanding of the spatiotemporal behavior of these cytokines is limited. Here, we describe a single cell transcriptome-based approach to infer which signal(s) an individual cell has received. We demonstrate that, contrary to expectations, CD8+ T cell-derived IFNγ is the dominant modifier of the TME relative to TNFα. Furthermore, we demonstrate that cell pools that show abundant IFNγ sensing are characterized by decreased expression of transforming growth factor ß (TGFß)-induced genes, consistent with IFNγ-mediated TME remodeling. Collectively, these data provide evidence that CD8+ T cell-secreted cytokines should be categorized into local and global tissue modifiers, and describe a broadly applicable approach to dissect cytokine and chemokine modulation of the TME.


Asunto(s)
Citocinas , Factor de Necrosis Tumoral alfa , Humanos , Microambiente Tumoral , Interferón gamma , Linfocitos T CD8-positivos
8.
Nat Rev Clin Oncol ; 21(3): 173-184, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191921

RESUMEN

Immunotherapy with immune-checkpoint inhibitors (ICIs) and targeted therapy with BRAF and MEK inhibitors have revolutionized the treatment of melanoma over the past decade. Despite these breakthroughs, the 5-year survival rate of patients with advanced-stage melanoma is at most 50%, emphasizing the need for additional therapeutic strategies. Adoptive cell therapy with tumour-infiltrating lymphocytes (TILs) is a therapeutic modality that has, in the past few years, demonstrated long-term clinical benefit in phase II/III trials involving patients with advanced-stage melanoma, including those with disease progression on ICIs and/or BRAF/MEK inhibitors. In this Review, we summarize the current status of TIL therapies for patients with advanced-stage melanoma, including potential upcoming marketing authorization, the characteristics of TIL therapy products, as well as future strategies that are expected to increase the efficacy of this promising cellular immunotherapy.


Asunto(s)
Melanoma , Humanos , Melanoma/terapia , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor , Proteínas Proto-Oncogénicas B-raf , Quinasas de Proteína Quinasa Activadas por Mitógenos
9.
Cancer Cell ; 41(10): 1817-1828.e9, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37683639

RESUMEN

The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.


Asunto(s)
Antígeno B7-H1 , Proteínas con Dominio MARVEL , Proteínas de la Mielina , Neoplasias , Linfocitos T , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Inmunidad , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Linfocitos T/inmunología , Proteínas de la Mielina/metabolismo , Proteínas con Dominio MARVEL/metabolismo
10.
Cancer Discov ; 13(10): 2212-2227, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37548431

RESUMEN

To dissect the effect of neoadjuvant PD-1 and CTLA4 blockade on intratumoral T cells in treatment-naive head and neck squamous cell carcinoma, we analyzed primary tumor immune infiltrates from responding and nonresponding patients. At baseline, a higher ratio between active (4-1BB/OX40+) and inactive regulatory CD4+ T cells was associated with immunotherapy response. Furthermore, upon therapy, this active regulatory T-cell (Treg) population showed a profound decrease in responding patients. In an analogous process, intratumoral dysfunctional CD8+ T cells displayed decreased expression of activity and dysfunction-related genes in responding patients, whereas in clinical nonresponders, natural killer cells showed an increased cytotoxic profile early upon treatment. These data reveal immunologic changes in response to dual PD-1/CTLA4 blockade, including a parallel remodeling of presumed tumor-reactive Treg and CD8+ T-cell compartments in responding patients, and indicate that the presence of activated Tregs at baseline may be associated with response. SIGNIFICANCE: In head and neck squamous cell carcinoma, neoadjuvant PD-1/CTLA4 blockade has shown substantial response rates (20%-35%). As recognition of tumor antigens by T cells appears to be a critical driver of therapy response, a better understanding of alterations in T-cell state that are associated with response and resistance is of importance. This article is featured in Selected Articles from This Issue, p. 2109.

11.
STAR Protoc ; 4(2): 102282, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149855

RESUMEN

The lack of suitable models currently hampers our understanding of how the tumor microenvironment responds to immunotherapy treatment. Here, we present a protocol for ex vivo culture of patient-derived tumor fragments (PDTFs). We describe the steps for tumor collection, generation and cryopreservation of PDTFs, and their subsequent thawing. We detail culture of PDTFs and their preparation for analysis. This protocol preserves the tumor microenvironment's composition, architecture, and cellular interactions, which can be perturbed by ex vivo treatment. For complete details on the use and execution of this protocol, please refer to Voabil et al. (2021).1.

12.
Nat Commun ; 14(1): 2184, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069150

RESUMEN

Ageing is associated with changes in the cellular composition of the immune system. During ageing, hematopoietic stem and progenitor cells (HSPCs) that produce immune cells are thought to decline in their regenerative capacity. However, HSPC function has been mostly assessed using transplantation assays, and it remains unclear how HSPCs age in the native bone marrow niche. To address this issue, we present an in situ single cell lineage tracing technology to quantify the clonal composition and cell production of single cells in their native niche. Our results demonstrate that a pool of HSPCs with unequal output maintains myelopoiesis through overlapping waves of cell production throughout adult life. During ageing, the increased frequency of myeloid cells is explained by greater numbers of HSPCs contributing to myelopoiesis rather than the increased myeloid output of individual HSPCs. Strikingly, the myeloid output of HSPCs remains constant over time despite accumulating significant transcriptomic changes throughout adulthood. Together, these results show that, unlike emergency myelopoiesis post-transplantation, aged HSPCs in their native microenvironment do not functionally decline in their regenerative capacity.


Asunto(s)
Células Madre Hematopoyéticas , Mielopoyesis , Adulto , Humanos , Anciano , Mielopoyesis/genética , Médula Ósea , Células de la Médula Ósea , Células Mieloides
13.
Nat Cancer ; 4(4): 535-549, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37038006

RESUMEN

Invasive lobular breast cancer (ILC) is the second most common histological breast cancer subtype, but ILC-specific trials are lacking. Translational research revealed an immune-related ILC subset, and in mouse ILC models, synergy between immune checkpoint blockade and platinum was observed. In the phase II GELATO trial ( NCT03147040 ), patients with metastatic ILC were treated with weekly carboplatin (area under the curve 1.5 mg ml-1 min-1) as immune induction for 12 weeks and atezolizumab (PD-L1 blockade; triweekly) from the third week until progression. Four of 23 evaluable patients had a partial response (17%), and 2 had stable disease, resulting in a clinical benefit rate of 26%. From these six patients, four had triple-negative ILC (TN-ILC). We observed higher CD8+ T cell infiltration, immune checkpoint expression and exhausted T cells after treatment. With this GELATO trial, we show that ILC-specific clinical trials are feasible and demonstrate promising antitumor activity of atezolizumab with carboplatin, particularly for TN-ILC, and provide insights for the design of highly needed ILC-specific trials.


Asunto(s)
Carcinoma Lobular , Neoplasias de la Mama Triple Negativas , Humanos , Antígeno B7-H1 , Carboplatino/uso terapéutico , Carcinoma Lobular/tratamiento farmacológico , Carcinoma Lobular/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
14.
Cell Rep Med ; 4(2): 100941, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36812891

RESUMEN

By restoring tryptophan, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors aim to reactivate anti-tumor T cells. However, a phase III trial assessing their clinical benefit failed, prompting us to revisit the role of IDO1 in tumor cells under T cell attack. We show here that IDO1 inhibition leads to an adverse protection of melanoma cells to T cell-derived interferon-gamma (IFNγ). RNA sequencing and ribosome profiling shows that IFNγ shuts down general protein translation, which is reversed by IDO1 inhibition. Impaired translation is accompanied by an amino acid deprivation-dependent stress response driving activating transcription factor-4 (ATF4)high/microphtalmia-associated transcription factor (MITF)low transcriptomic signatures, also in patient melanomas. Single-cell sequencing analysis reveals that MITF downregulation upon immune checkpoint blockade treatment predicts improved patient outcome. Conversely, MITF restoration in cultured melanoma cells causes T cell resistance. These results highlight the critical role of tryptophan and MITF in the melanoma response to T cell-derived IFNγ and uncover an unexpected negative consequence of IDO1 inhibition.


Asunto(s)
Melanoma , Triptófano , Humanos , Melanoma/patología , Interferón gamma/metabolismo , Linfocitos T/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética
15.
Nat Biotechnol ; 41(6): 783-787, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36593398

RESUMEN

Cancer neoantigens that arise from tumor mutations are drivers of tumor-specific T cell responses, but identification of T cell-recognized neoantigens in individual patients is challenging. Previous methods have restricted antigen discovery to selected HLA alleles, thereby limiting the breadth of neoantigen repertoires that can be uncovered. Here, we develop a genetic neoantigen screening system that allows sensitive identification of CD4+ and CD8+ T cell-recognized neoantigens across patients' complete HLA genotypes.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Humanos , Linfocitos T CD8-positivos , Mutación , Linfocitos T CD4-Positivos
16.
Nature ; 613(7945): 743-750, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631610

RESUMEN

DNA mismatch repair-deficient (MMR-d) cancers present an abundance of neoantigens that is thought to explain their exceptional responsiveness to immune checkpoint blockade (ICB)1,2. Here, in contrast to other cancer types3-5, we observed that 20 out of 21 (95%) MMR-d cancers with genomic inactivation of ß2-microglobulin (encoded by B2M) retained responsiveness to ICB, suggesting the involvement of immune effector cells other than CD8+ T cells in this context. We next identified a strong association between B2M inactivation and increased infiltration by γδ T cells in MMR-d cancers. These γδ T cells mainly comprised the Vδ1 and Vδ3 subsets, and expressed high levels of PD-1, other activation markers, including cytotoxic molecules, and a broad repertoire of killer-cell immunoglobulin-like receptors. In vitro, PD-1+ γδ T cells that were isolated from MMR-d colon cancers exhibited enhanced reactivity to human leukocyte antigen (HLA)-class-I-negative MMR-d colon cancer cell lines and B2M-knockout patient-derived tumour organoids compared with antigen-presentation-proficient cells. By comparing paired tumour samples from patients with MMR-d colon cancer that were obtained before and after dual PD-1 and CTLA-4 blockade, we found that immune checkpoint blockade substantially increased the frequency of γδ T cells in B2M-deficient cancers. Taken together, these data indicate that γδ T cells contribute to the response to immune checkpoint blockade in patients with HLA-class-I-negative MMR-d colon cancers, and underline the potential of γδ T cells in cancer immunotherapy.


Asunto(s)
Neoplasias del Colon , Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T , Humanos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Microglobulina beta-2/deficiencia , Microglobulina beta-2/genética , Reparación de la Incompatibilidad de ADN/genética , Receptores KIR , Línea Celular Tumoral , Organoides , Presentación de Antígeno , Genes MHC Clase I/genética
17.
Cancer Immunol Immunother ; 72(6): 1553-1565, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36526910

RESUMEN

Immunotherapies targeting truly tumor-specific targets focus on the expansion and activation of T cells against neoantigens or oncogenic viruses. One target is the human papilloma virus type 16 (HPV16), responsible for several anogenital cancers and oropharyngeal carcinomas. Spontaneous and vaccine-induced HPV-specific T cells have been associated with better clinical outcome. However, the epitopes and restriction elements to which these T cells respond remained elusive. To identify CD8+ T cell epitopes in cultures of tumor infiltrating lymphocytes, we here used multimers and/or a functional screening platform exploiting single HLA class I allele-engineered antigen presenting cells. This resulted in the detection of 20 CD8+ T cell responses to 11 different endogenously processed HLA-peptide combinations within 12 HPV16-induced tumors. Specific HLA-peptide combinations dominated the response in patients expressing these HLA alleles. T cell receptors (TCRs) reactive to seven different HLA class I-restricted peptides could be isolated and analysis revealed tumor reactivity for five of the six TCRs analyzed. The tumor reactive TCRs to these dominant HLA class I peptide combinations can potentially be used to engineer tumor-specific T cells for adoptive cell transfer approaches to treat HPV16-induced cancers.


Asunto(s)
Neoplasias , Infecciones por Papillomavirus , Humanos , Papillomavirus Humano 16 , Neoplasias/metabolismo , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T , Antígenos de Histocompatibilidad Clase I , Linfocitos Infiltrantes de Tumor , Epítopos de Linfocito T , Péptidos
18.
Cancer Discov ; 12(10): 2244-2248, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36196573

RESUMEN

Tumor-specific cytotoxic T cells unleashed by the blockade of immune checkpoints have to overcome a hostile tumor microenvironment (TME). They start from very small numbers of T cells with tumor antigen specificity and, despite expansion, likely remain at a numerical disadvantage to the tumor cells they target. To overcome these obstacles, we propose that T cells need to change the TME to make it permissive for their antitumor effects by altering the phenotype of cells beyond the cancer cells they are in physical contact with. In this process, IFNγ secreted by tumor-specific T cells plays a critical role, as it changes the expression of hundreds of genes in cancer cells and other immune cells in the TME up to 40 layers of cells away from their location, effectively turning these cells into enablers of the antitumor immune response. In this perspective, we postulate that the clinical activity of cancer immunotherapy with immune-checkpoint blocking antibodies and adoptively transferred T cells requires that cancer cells facilitate the antitumor immune response. IFNγ effectively changes the balance of power in the TME to enable the antitumor activity of tumor antigen-specific cytotoxic T cells.


Asunto(s)
Neoplasias , Microambiente Tumoral , Anticuerpos Bloqueadores , Antígenos de Neoplasias , Humanos , Inmunidad , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia
19.
Med ; 3(10): 645-647, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242997

RESUMEN

Tumor-infiltrating lymphocytes show consistent clinical benefit in metastatic melanoma, but they are a poorly defined product with variable antitumor activity. In this issue, Palmer et al.1 create for clinical testing a cell product consisting of highly functional tumor-reactive T cells by knocking out CISH, an inhibitor of T cell activation.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Melanoma , Humanos , Activación de Linfocitos , Melanoma/terapia , Linfocitos T/patología
20.
Clin Cancer Res ; 28(22): 4893-4906, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35852792

RESUMEN

PURPOSE: Durable clinical benefit to PD-1 blockade in non-small cell lung cancer (NSCLC) is currently limited to a small fraction of patients, underlining the need for predictive biomarkers. We recently identified a tumor-reactive tumor-infiltrating T lymphocyte (TIL) pool, termed PD-1T TILs, with predictive potential in NSCLC. Here, we examined PD-1T TILs as biomarker in NSCLC. EXPERIMENTAL DESIGN: PD-1T TILs were digitally quantified in 120 baseline samples from advanced NSCLC patients treated with PD-1 blockade. Primary outcome was disease control (DC) at 6 months. Secondary outcomes were DC at 12 months and survival. Exploratory analyses addressed the impact of lesion-specific responses, tissue sample properties, and combination with other biomarkers on the predictive value of PD-1T TILs. RESULTS: PD-1T TILs as a biomarker reached 77% sensitivity and 67% specificity at 6 months, and 93% and 65% at 12 months, respectively. Particularly, a patient group without clinical benefit was reliably identified, indicated by a high negative predictive value (NPV) (88% at 6 months, 98% at 12 months). High PD-1T TILs related to significantly longer progression-free (HR 0.39, 95% CI, 0.24-0.63, P < 0.0001) and overall survival (HR 0.46, 95% CI, 0.28-0.76, P < 0.01). Predictive performance was increased when lesion-specific responses and samples obtained immediately before treatment were assessed. Notably, the predictive performance of PD-1T TILs was superior to PD-L1 and tertiary lymphoid structures in the same cohort. CONCLUSIONS: This study established PD-1T TILs as predictive biomarker for clinical benefit to PD-1 blockade in patients with advanced NSCLC. Most importantly, the high NPV demonstrates an accurate identification of a patient group without benefit. See related commentary by Anagnostou and Luke, p. 4835.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/análisis , Linfocitos Infiltrantes de Tumor , Valor Predictivo de las Pruebas , Biomarcadores de Tumor/análisis , Pronóstico , Linfocitos T CD8-positivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...