Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(14): 142502, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702191

RESUMEN

From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the ß^{+}/electron-capture decay of ^{110,112}In and the ß^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested. For ^{112}Cd, the 2^{+} and 3^{+} intruder γ-band members are suggested, the 0_{3}^{+} band is extended to spin 4^{+}, and the 0_{4}^{+} band is identified. The results are interpreted using beyond-mean-field calculations employing the symmetry conserving configuration mixing method with the Gogny D1S energy density functional and with the suggestion that the Cd isotopes exhibit multiple shape coexistence.

2.
Phys Rev Lett ; 100(19): 192504, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18518447

RESUMEN

The branching ratio for the superallowed beta(+) decay of (38)K(m) was measured at TRIUMF's ISAC radioactive ion beam facility. The M3 internal transition between the isomer and the ground state of (38)K(m) was observed with a branching ratio of 330(43) ppm. A search for the nonanalogue beta-decay branch to the first excited 0(+) state in (38)Ar was also performed and yielded an upper limit of < or =12 ppm at 90% C.L. These measurements lead to a revised superallowed branching ratio for (38)K(m) of 99.967(4)%, and increase the (38)K(m) ft value by its entire quoted uncertainty to ft=3052.1(10) s. Implications for tests of the nuclear-structure dependent corrections in superallowed beta decays and the extraction of the Cabibbo-Kobayashi-Maskawa matrix element V(ud) are discussed.

3.
Phys Rev Lett ; 97(10): 102501, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-17025808

RESUMEN

A high-precision branching ratio measurement for the superallowed beta+ decay of 62Ga was performed at the Isotope Separator and Accelerator radioactive ion beam facility. Nineteen gamma rays emitted following beta+ decay of 62Ga were identified, establishing the dominant superallowed branching ratio to be (99.861+/-0.011)%. Combined with recent half-life and Q-value measurements, this branching ratio yields a superallowed ft value of 3075.6+/-1.4 s for 62Ga decay. These results demonstrate the feasibility of high-precision superallowed branching ratio measurements in the A>or=62 mass region and provide the first stringent tests of the large isospin-symmetry-breaking effects predicted for these decays.

4.
Phys Rev Lett ; 95(23): 232501, 2005 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-16384300

RESUMEN

Three rotational bands in 74Kr were studied up to (in one case one transition short of) the maximum spin I(max) of their respective single-particle configurations. Their lifetimes have been determined using the Doppler-shift attenuation method. The deduced transition quadrupole moments reveal a modest decrease, but far from a complete loss of collectivity at the maximum spin I(max). This feature, together with the results of mean field calculations, indicates that the observed bands do not terminate at I = I(max).

5.
Genes Dev ; 14(18): 2377-91, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10995393

RESUMEN

Phytochromes are informational photoreceptors through which plants adapt their growth and development to prevailing light conditions. These adaptations are effected primarily through phytochrome regulation of gene expression by mechanisms that remain unclear. We describe a new mutant, hfr1 (long hypocotyl in far-red), that exhibits a reduction in seedling responsiveness specifically to continuous far-red light (FRc), thereby suggesting a locus likely to be involved in phytochrome A (phyA) signal transduction. Using an insertionally tagged allele, we cloned the HFR1 gene and subsequently confirmed its identity with additional alleles derived from a directed genetic screen. HFR1 encodes a nuclear protein with strong similarity to the bHLH family of DNA-binding proteins but with an atypical basic region. In contrast to PIF3, a related bHLH protein previously shown to bind phyB, HFR1 did not bind either phyA or B. However, HFR1 did bind PIF3, suggesting heterodimerization, and both the HFR1/PIF3 complex and PIF3 homodimer bound preferentially to the Pfr form of both phytochromes. Thus, HFR1 may function to modulate phyA signaling via heterodimerization with PIF3. HFR1 mRNA is 30-fold more abundant in FRc than in continuous red light, suggesting a potential mechanistic basis for the specificity of HFR1 to phyA signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Hipocótilo/genética , Proteínas Nucleares/genética , Células Fotorreceptoras , Fitocromo/fisiología , Proteínas de Plantas , Transducción de Señal , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Mapeo Cromosómico , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Luz , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fenotipo , Fitocromo/metabolismo , Fitocromo A , Fitocromo B , Alineación de Secuencia , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Tree Physiol ; 17(10): 617-26, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14759901

RESUMEN

We compared the physiological and morphological responses of rooted cuttings of Populus trichocarpa Torr. & Gray and P. trichocarpa x P. deltoides Bartr. ex Marsh. grown in either near-ambient solar ultraviolet-B (UV-B; 280-320 nm) radiation (cellulose diacetate film) or subambient UV-B radiation (polyester film) for one growing season. Midday biologically effective UV-B radiation was 120.6 and 1.6 mJ m(-2) s(-1) under the cellulose diacetate and polyester films, respectively. Gas exchange, leaf chlorophyll, light harvesting efficiency of photosystem II, and foliar UV-B radiation-absorbing compounds (i.e., flavonoid derivatives) were measured in expanding (leaf plastochron index (LPI) 5), nearly expanded (LPI 10), and fully expanded mature (LPI 15) leaves of intact plants of plastochron index 30 to 35. Plants were then harvested and height, diameter, biomass allocation and leaf anatomical attributes determined. Net photosynthesis, transpiration, and stomatal conductance were significantly greater in mature leaves exposed to subambient UV-B radiation than in mature leaves exposed to near-ambient UV-B radiation. Concentrations of UV-B radiation-absorbing compounds (measured as absorbance of methanol-extracts at 300 nm) were significantly greater in mature leaves exposed to near-ambient UV-B radiation than in mature leaves exposed to subambient UV-B radiation. The UV-B radiation treatments had no effects on chlorophyll content or intrinsic light harvesting efficiency of photosystem II. Height, diameter, and biomass were not significantly affected by UV-B radiation regime in either clone. Leaf anatomical development was unaffected by UV-B radiation treatment in P. trichocarpa x P. deltoides. For P. trichocarpa, leaf anatomical development was complete by LPI 10 in the near-ambient UV-B radiation treatment, but continued through to LPI 15 in the subambient UV-B radiation treatment. Mature leaves of P. trichocarpa were thicker in the subambient UV-B radiation treatment than in the near-ambient UV-B radiation treament as a result of greater development of palisade parenchyma tissue. We conclude that exposure to near-ambient UV-B radiation for one growing season caused shifts in carbon allocation from leaf development to other pools, probably including but not limited to, UV-B absorbing compounds. This reallocation curtailed leaf development and reduced photosynthetic capacity of the plants compared with those in the subambient UV-B radiation treatment and may affect growth over longer periods of exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...