Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 153(2): 024109, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668948

RESUMEN

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

2.
J Chem Phys ; 152(23): 234115, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32571049

RESUMEN

Exchange coupling constants (J) are fundamental to the understanding of spin spectra of magnetic systems. Here, we investigate the broken-symmetry (BS) approaches of Noodleman and Yamaguchi in conjunction with coupled cluster (CC) methods to obtain exchange couplings. J values calculated from CC in this fashion converge smoothly toward the full configuration interaction result with increasing level of CC excitation. We compare this BS-CC scheme to the complementary equation-of-motion CC approach on a selection of bridged molecular cases and give results from a few other methodologies for context.

3.
J Phys Chem Lett ; 11(10): 3789-3795, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32331500

RESUMEN

The giant {Mn70} and {Mn84} wheels are the largest nuclearity single-molecule magnets synthesized to date, and understanding their magnetic properties poses a challenge to theory. Starting from first-principles calculations, we explore the magnetic properties and excitations in these wheels using effective spin Hamiltonians. We find that the unusual geometry of the superexchange pathways leads to weakly coupled {Mn7} subunits carrying an effective S = 2 spin. The spectrum exhibits a hierarchy of energy scales and massive degeneracies, with the lowest-energy excitations arising from Heisenberg-ring-like excitations of the {Mn7} subunits around the wheel. We further describe how weak longer-range couplings can select the precise spin ground-state of the Mn wheels out of the nearly degenerate ground-state band.

4.
J Chem Phys ; 148(20): 204104, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29865814

RESUMEN

We present efficient methods to calculate beyond random phase approximation (RPA) correlation energies for molecular systems with up to 500 atoms. To reduce the computational cost, we employ the resolution-of-the-identity and a double-Laplace transform of the non-interacting polarization propagator in conjunction with an atomic orbital formalism. Further improvements are achieved using integral screening and the introduction of Cholesky decomposed densities. Our methods are applicable to the dielectric matrix formalism of RPA including second-order screened exchange (RPA-SOSEX), the RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF) approximation, and RPA renormalized perturbation theory using an approximate exchange kernel (RPA-AXK). We give an application of our methodology by presenting RPA-SOSEX benchmark results for the L7 test set of large, dispersion dominated molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables calculating beyond RPA correlation energies for significantly larger molecules than possible to date, thereby extending the applicability of these methods to a wider range of chemical systems.

5.
J Chem Theory Comput ; 14(5): 2505-2515, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29658715

RESUMEN

An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

6.
J Chem Phys ; 146(21): 211106, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28595410

RESUMEN

We present a method to improve upon the resolution-of-the-identity (RI) for correlation methods. While RI is known to allow for drastic speedups, it relies on a cancellation of errors. Our method eliminates the errors introduced by RI which are known to be problematic for absolute energies. In this way, independence of the error compensation assumption for relative energies is also achieved. The proposed method is based on the idea of starting with an oversized RI basis and projecting out all of its unphysical parts. The approach can be easily implemented into existing RI codes and results in an overhead of about 30%, while effectively removing the RI error. In passing, this process alleviates the problem that for many frequently employed basis sets no optimized RI basis sets have been constructed. In this paper, the theory is presented and results are discussed exemplarily for the random phase approximation and Møller-Plesset perturbation theory.

7.
J Chem Theory Comput ; 13(4): 1647-1655, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28263577

RESUMEN

A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.

8.
J Chem Phys ; 144(3): 031101, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26801012

RESUMEN

An atomic-orbital (AO) reformulation of the random-phase approximation (RPA) correlation energy is presented allowing to reduce the steep computational scaling to linear, so that large systems can be studied on simple desktop computers with fully numerically controlled accuracy. Our AO-RPA formulation introduces a contracted double-Laplace transform and employs the overlap-metric resolution-of-the-identity. First timings of our pilot code illustrate the reduced scaling with systems comprising up to 1262 atoms and 10 090 basis functions. .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...