Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Plant Cell ; 36(9): 3809-3823, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39056474

RESUMEN

The domestication of crops, coupled with agroecosystem development, is associated with major environmental changes and provides an ideal model of phenotypic plasticity. Here, we examined 32 genotypes of three tetraploid wheat (Triticum turgidum L.) subspecies, wild emmer, emmer, and durum wheat, which are representative of the key stages in the domestication of tetraploid wheat. We developed a pipeline that integrates RNA-Seq data and population genomics to assess gene expression plasticity and identify selection signatures under diverse nitrogen availability conditions. Our analysis revealed differing gene expression responses to nitrogen availability across primary (wild emmer to emmer) and secondary (emmer to durum wheat) domestication. Notably, nitrogen triggered the expression of twice as many genes in durum wheat compared to that in emmer and wild emmer. Unique selection signatures were identified at each stage: primary domestication mainly influenced genes related to biotic interactions, whereas secondary domestication affected genes related to amino acid metabolism, in particular lysine. Selection signatures were found in differentially expressed genes (DEGs), notably those associated with nitrogen metabolism, such as the gene encoding glutamate dehydrogenase (GDH). Overall, our study highlights the pivotal role of nitrogen availability in the domestication and adaptive responses of a major food crop, with varying effects across different traits and growth conditions.


Asunto(s)
Domesticación , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Tetraploidía , Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Nitrógeno/metabolismo , Transcriptoma/genética , Genotipo
2.
Microb Biotechnol ; 17(6): e14507, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884488

RESUMEN

Pathogens resistant to classical control strategies pose a significant threat to crop yield, with seeds being a major transmission route. Bacteriophages, viruses targeting bacteria, offer an environmentally sustainable biocontrol solution. In this study, we isolated and characterized two novel phages, Athelas and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, respectively, and included the recently published Pfeifenkraut phage infecting Xanthomonas translucens. Using a simple immersion method, phages coated onto seeds successfully lysed bacteria post air-drying. The seed coat mucilage (SCM), a polysaccharide-polymer matrix exuded by seeds, plays a critical role in phage binding. Seeds with removed mucilage formed five to 10 times less lysis zones compared to those with mucilage. The podovirus Athelas showed the highest mucilage dependency. Phages from the Autographiviridae family also depended on mucilage for seed adhesion. Comparative analysis of Arabidopsis SCM mutants suggested the diffusible cellulose as a key component for phage binding. Long-term activity tests demonstrated high phage stability on seed surfaces and significantly increasing seedling survival rates in the presence of pathogens. Using non-virulent host strains enhanced phage presence on seeds but also has potential limitations. These findings highlight phage-based interventions as promising, sustainable strategies for combating pathogen resistance and improving crop yield.


Asunto(s)
Arabidopsis , Bacteriófagos , Enfermedades de las Plantas , Pseudomonas syringae , Semillas , Semillas/microbiología , Semillas/virología , Pseudomonas syringae/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Bacteriófagos/fisiología , Bacteriófagos/genética , Arabidopsis/virología , Arabidopsis/microbiología , Xanthomonas/virología , Mucílago de Planta/metabolismo , Mucílago de Planta/química , Agentes de Control Biológico , Acoplamiento Viral
4.
Front Plant Sci ; 14: 1233794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680357

RESUMEN

Automated high-throughput plant phenotyping (HTPP) enables non-invasive, fast and standardized evaluations of a large number of plants for size, development, and certain physiological variables. Many research groups recognize the potential of HTPP and have made significant investments in HTPP infrastructure, or are considering doing so. To make optimal use of limited resources, it is important to plan and use these facilities prudently and to interpret the results carefully. Here we present a number of points that users should consider before purchasing, building or utilizing such equipment. They relate to (1) the financial and time investment for acquisition, operation, and maintenance, (2) the constraints associated with such machines in terms of flexibility and growth conditions, (3) the pros and cons of frequent non-destructive measurements, (4) the level of information provided by proxy traits, and (5) the utilization of calibration curves. Using data from an Arabidopsis experiment, we demonstrate how diurnal changes in leaf angle can impact plant size estimates from top-view cameras, causing deviations of more than 20% over the day. Growth analysis data from another rosette species showed that there was a curvilinear relationship between total and projected leaf area. Neglecting this curvilinearity resulted in linear calibration curves that, although having a high r2 (> 0.92), also exhibited large relative errors. Another important consideration we discussed is the frequency at which calibration curves need to be generated and whether different treatments, seasons, or genotypes require distinct calibration curves. In conclusion, HTPP systems have become a valuable addition to the toolbox of plant biologists, provided that these systems are tailored to the research questions of interest, and users are aware of both the possible pitfalls and potential involved.

5.
Front Plant Sci ; 14: 1235175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731976

RESUMEN

Mission-oriented governance of research focuses on inspirational, yet attainable goals and targets the sustainable development goals through innovation pathways. We disentangle its implications for plant breeding research and thus impacting the sustainability transformation of agricultural systems, as it requires improved crop varieties and management practices. Speedy success in plant breeding is vital to lower the use of chemical fertilizers and pesticides, increase crop resilience to climate stresses and reduce postharvest losses. A key question is how this success may come about? So far plant breeding research has ignored wider social systems feedbacks, but governance also failed to deliver a set of systemic breeding goals providing directionality and organization to research policy of the same. To address these challenges, we propose a heuristic illustrating the core elements needed for governing plant breeding research: Genetics, Environment, Management and Social system (GxExMxS) are the core elements for defining directions for future breeding. We illustrate this based on historic cases in context of current developments in plant phenotyping technologies and derive implications for governing research infrastructures and breeding programs. As part of mission-oriented governance we deem long-term investments into human resources and experimental set-ups for agricultural systems necessary to ensure a symbiotic relationship for private and public breeding actors and recommend fostering collaboration between social and natural sciences for working towards transdisciplinary collaboration.

6.
Mol Plant Microbe Interact ; 36(9): 536-548, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36989040

RESUMEN

Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

7.
Viruses ; 14(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35891434

RESUMEN

The genus of Xanthomonas contains many well-known plant pathogens with the ability to infect some of the most important crop plants, thereby causing significant economic damage. Unfortunately, classical pest-control strategies are neither particularly efficient nor sustainable and we are, therefore, in demand of alternatives. Here, we present the isolation and characterization of seven novel phages infecting the plant-pathogenic species Xanthomonas translucens and Xanthomonas campestris. Transmission electron microscopy revealed that all phages show a siphovirion morphology. The analysis of genome sequences and plaque morphologies are in agreement with a lytic lifestyle of the phages making them suitable candidates for biocontrol. Moreover, three of the isolated phages form the new genus "Shirevirus". All seven phages belong to four distinct clusters underpinning their phylogenetic diversity. Altogether, this study presents the first characterized isolates for the plant pathogen X. translucens and expands the number of available phages for plant biocontrol.


Asunto(s)
Bacteriófagos , Xanthomonas , Bacteriófagos/genética , Filogenia
8.
ESC Heart Fail ; 9(4): 2703-2712, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35438261

RESUMEN

AIMS: New-onset atrial fibrillation (NOAF) is the most common complication after cardiac surgery, occurring in 25-50% of patients. It is associated with post-operative stroke, increased mortality, prolonged hospital length of stay, and higher treatment costs. Previous small observational studies have identified the left atrium as a source of the electrical rotors and foci maintaining NOAF, but confirmation by a large prospective clinical study is still missing. The aim of the proposed study is to investigate whether the source of NOAF lies in the left atrium. The correct identification of NOAF-maintaining structures in cardiac surgical patients might offer potential therapeutic targets for prophylactic perioperative ablation strategies. METHODS AND RESULTS: This is a prospective single-centre observational study of patients developing NOAF after cardiac surgery. The primary outcome is the description of NOAF-maintaining structures within the atria. Key secondary outcomes include overall mortality, intensive care unit length of stay, hospital-ventilator-free days, and proportion of persistent NOAF. In NOAF patients, the non-invasive electrophysiological mapping will be conducted using a 252-electrode electrocardiogram vest. After mapping, a low-dose computed tomography scan of the chest will be performed to integrate the electrophysiological mapping results into a 3D picture of the heart. The study will include approximately 570 patients, of whom 30% (n = 170) are expected to develop NOAF. Sample size calculation revealed that 157 NOAF patients are necessary to assess the primary outcome. Patients will be tracked for a total of 5 years. CONCLUSIONS: This is the largest prospective study to date describing the electrophysiological mechanisms of NOAF using non-invasive mapping.


Asunto(s)
Fibrilación Atrial , Procedimientos Quirúrgicos Cardíacos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/etiología , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Electrocardiografía , Humanos , Estudios Observacionales como Asunto , Estudios Prospectivos , Factores de Riesgo
9.
Plants (Basel) ; 11(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35270102

RESUMEN

Legumes associate with root colonizing rhizobia that provide fixed nitrogen to its plant host in exchange for recently fixed carbon. There is a lack of understanding of how individual plants modulate carbon allocation to a nodulated root system as a dynamic response to abiotic stimuli. One reason is that most approaches are based on destructive sampling, making quantification of localised carbon allocation dynamics in the root system difficult. We established an experimental workflow for routinely using non-invasive Positron Emission Tomography (PET) to follow the allocation of leaf-supplied 11C tracer towards individual nodules in a three-dimensional (3D) root system of pea (Pisum sativum). Nitrate was used for triggering a reduction of biological nitrogen fixation (BNF), which was expected to rapidly affect carbon allocation dynamics in the root-nodule system. The nitrate treatment led to a decrease in 11C tracer allocation to nodules by 40% to 47% in 5 treated plants while the variation in control plants was less than 11%. The established experimental pipeline enabled for the first time that several plants could consistently be labelled and measured using 11C tracers in a PET approach to quantify C-allocation to individual nodules following a BNF reduction. Our study demonstrates the strength of using 11C tracers in a PET approach for non-invasive quantification of dynamic carbon allocation in several growing plants over several days. A major advantage of the approach is the possibility to investigate carbon dynamics in small regions of interest in a 3D system such as nodules in comparison to whole plant development.

10.
Plants (Basel) ; 11(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336631

RESUMEN

Next-generation sequencing and metabolomics have become very cost and work efficient and are integrated into an ever-growing number of life science research projects. Typically, established software pipelines analyze raw data and produce quantitative data informing about gene expression or concentrations of metabolites. These results need to be visualized and further analyzed in order to support scientific hypothesis building and identification of underlying biological patterns. Some of these tools already exist, but require installation or manual programming. We developed "Gene Expression Plotter" (GXP), an RNAseq and Metabolomics data visualization and analysis tool entirely running in the user's web browser, thus not needing any custom installation, manual programming or uploading of confidential data to third party servers. Consequently, upon receiving the bioinformatic raw data analysis of RNAseq or other omics results, GXP immediately enables the user to interact with the data according to biological questions by performing knowledge-driven, in-depth data analyses and candidate identification via visualization and data exploration. Thereby, GXP can support and accelerate complex interdisciplinary omics projects and downstream analyses. GXP offers an easy way to publish data, plots, and analysis results either as a simple exported file or as a custom website. GXP is freely available on GitHub (see introduction).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA