Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancer Res ; 83(19): 3284-3304, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37450351

RESUMEN

Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated ß2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of ß2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE: Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Femenino , FN-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Neoplasias de la Mama/patología , Presentación de Antígeno , Proteínas Reguladoras de la Apoptosis , Apoptosis , Línea Celular Tumoral , Proteínas Mitocondriales/metabolismo , Microambiente Tumoral
2.
Nat Commun ; 14(1): 4017, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419892

RESUMEN

Aromatase inhibitors (AIs) reduce recurrences and mortality in postmenopausal patients with oestrogen receptor positive (ER+) breast cancer (BC), but >20% of patients will eventually relapse. Given the limited understanding of intrinsic resistance in these tumours, here we conduct a large-scale molecular analysis to identify features that impact on the response of ER + HER2- BC to AI. We compare the 15% of poorest responders (PRs, n = 177) as measured by proportional Ki67 changes after 2 weeks of neoadjuvant AI to good responders (GRs, n = 190) selected from the top 50% responders in the POETIC trial and matched for baseline Ki67 categories. In this work, low ESR1 levels are associated with poor response, high proliferation, high expression of growth factor pathways and non-luminal subtypes. PRs having high ESR1 expression have similar proportions of luminal subtypes to GRs but lower plasma estradiol levels, lower expression of estrogen response genes, higher levels of tumor infiltrating lymphocytes and immune markers, and more TP53 mutations.


Asunto(s)
Inhibidores de la Aromatasa , Neoplasias de la Mama , Humanos , Femenino , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Antígeno Ki-67/metabolismo , Posmenopausia , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Recurrencia Local de Neoplasia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
3.
Nat Commun ; 14(1): 3834, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386008

RESUMEN

Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research.


Asunto(s)
Hemangiosarcoma , Leiomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Proteómica , Sarcoma/genética , Leiomiosarcoma/genética
4.
Breast Cancer Res ; 24(1): 61, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096872

RESUMEN

BACKGROUND: In clinical practice, oestrogen receptor (ER) analysis is almost entirely by immunohistochemistry (IHC). ASCO/CAP recommends cut-offs of < 1% (negative) and 1-10% (low) cells positive. There is uncertainty whether patients with ER low tumours benefit from endocrine therapy. We aimed to assess IHC and mRNA cut-points for ER versus biological response of primary breast cancer to 2 weeks' aromatase inhibitor treatment as measured by change in Ki67. METHODS: Cases were selected from the aromatase inhibitor treatment group of POETIC. We selected the 15% with the poorest Ki67 response (PR, < 40% Ki67 suppression, n = 230) and a random 30% of the remainder categorised as intermediate (IR, 40-79% Ki67 suppression, n = 150) and good-responders (GR, ≥ 80% Ki67 suppression, n = 230) from HER2 - group. All HER2 + cases available were selected irrespective of their response category (n = 317). ER expression was measured by IHC and qPCR. RESULTS: ER IHC was available from 515 HER2 - and 186 HER2 + tumours and ER qPCR from 367 HER2 - and 171 HER2 + tumours. Ninety-one percentage of patients with ER IHC < 10% were PRs with similar rates in HER2 - and HER2 + cases. At or above ER IHC 10% substantial numbers of patients showed IR or GR. Similar proportions of patients were defined by cut-points of ER IHC < 10% and ER mRNA < 5 units. In addition, loss of PgR expression altered ER anti-proliferation response with 92% of PgR - cases with ER IHC < 40% being PRs. CONCLUSIONS: There was little responsiveness at IHC < 10% and no distinction between < 1% and 1-10% cells positive. Similar separation of PRs from IR/GRs was achieved by IHC and mRNA.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Aromatasa , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Humanos , Inmunohistoquímica , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , ARN Mensajero/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo
5.
EBioMedicine ; 83: 104205, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35985932

RESUMEN

BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks' presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14-5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse. FUNDING: Cancer Research UK (CRUK/07/015).


Asunto(s)
Inhibidores de la Aromatasa , Neoplasias de la Mama , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ensayos Clínicos como Asunto , Femenino , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Recurrencia Local de Neoplasia/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo
6.
Clin Cancer Res ; 28(6): 1217-1228, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34965950

RESUMEN

PURPOSE: Aromatase inhibitor (AI) treatment is the standard of care for postmenopausal women with primary estrogen receptor-positive breast cancer. The impact of duration of neoadjuvant endocrine therapy (NET) on molecular characteristics is still unknown. We evaluated and compared changes of gene expression profiles under short-term (2-week) versus longer-term neoadjuvant AIs. EXPERIMENTAL DESIGN: Global gene expression profiles from the PeriOperative Endocrine Therapy for Individualised Care (POETIC) trial (137 received 2 weeks of AIs and 47 received no treatment) and targeted gene expression from 80 patients with breast cancer treated with NET for more than 1 month (NeoAI) were assessed. Intrinsic subtyping, module scores covering different cancer pathways and immune-related genes were calculated for pretreated and posttreated tumors. RESULTS: The differences in intrinsic subtypes after NET were comparable between the two cohorts, with most Luminal B (90.0% in the POETIC trial and 76.3% in NeoAI) and 50.0% of HER2 enriched at baseline reclassified as Luminal A or normal-like after NET. Downregulation of proliferative-related pathways was observed after 2 weeks of AIs. However, more changes in genes from cancer-signaling pathways such as MAPK and PI3K/AKT/mTOR and immune response/immune-checkpoint components that were associated with AI-resistant tumors and differential outcome were observed in the NeoAI study. CONCLUSIONS: Tumor transcriptional profiles undergo bigger changes in response to longer NET. Changes in HER2-enriched and Luminal B subtypes are similar between the two cohorts, thus AI-sensitive intrinsic subtype tumors associated with good survival might be identified after 2 weeks of AI. The changes of immune-checkpoint component expression in early AI resistance and its impact on survival outcome warrants careful investigation in clinical trials.


Asunto(s)
Inhibidores de la Aromatasa , Neoplasias de la Mama , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Terapia Neoadyuvante , Fosfatidilinositol 3-Quinasas , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
7.
NPJ Breast Cancer ; 7(1): 15, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579961

RESUMEN

Multi-gene prognostic signatures including the Oncotype® DX Recurrence Score (RS), EndoPredict® (EP) and Prosigna® (Risk Of Recurrence, ROR) are widely used to predict the likelihood of distant recurrence in patients with oestrogen-receptor-positive (ER+), HER2-negative breast cancer. Here, we describe the development and validation of methods to recapitulate RS, EP and ROR scores from NanoString expression data. RNA was available from 107 tumours from postmenopausal women with early-stage, ER+, HER2- breast cancer from the translational Arimidex, Tamoxifen, Alone or in Combination study (TransATAC) where previously these signatures had been assessed with commercial methodology. Gene expression was measured using NanoString nCounter. For RS and EP, conversion factors to adjust for cross-platform variation were estimated using linear regression. For ROR, the steps to perform subgroup-specific normalisation of the gene expression data and calibration factors to calculate the 46-gene ROR score were assessed and verified. Training with bootstrapping (n = 59) was followed by validation (n = 48) using adjusted, research use only (RUO) NanoString-based algorithms. In the validation set, there was excellent concordance between the RUO scores and their commercial counterparts (rc(RS) = 0.96, 95% CI 0.93-0.97 with level of agreement (LoA) of -7.69 to 8.12; rc(EP) = 0.97, 95% CI 0.96-0.98 with LoA of -0.64 to 1.26 and rc(ROR) = 0.97 (95% CI 0.94-0.98) with LoA of -8.65 to 10.54). There was also a strong agreement in risk stratification: (RS: κ = 0.86, p < 0.0001; EP: κ = 0.87, p < 0.0001; ROR: κ = 0.92, p < 0.001). In conclusion, the calibrated algorithms recapitulate the commercial RS and EP scores on individual biopsies and ROR scores on samples based on subgroup-centreing method using NanoString expression data.

8.
Clin Cancer Res ; 26(3): 608-622, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31591187

RESUMEN

PURPOSE: Advanced breast cancer (ABC) has not been subjected to the same degree of molecular scrutiny as early primary cancer. Breast cancer evolves with time and under the selective pressure of treatment, with the potential to acquire mutations with resistance to treatment and disease progression. To identify potentially targetable mutations in advanced breast cancer, we performed prospective molecular characterization of a cohort of patients with ABC. EXPERIMENTAL DESIGN: Biopsies from patients with advanced breast cancer were sequenced with a 41 genes targeted panel in the ABC Biopsy (ABC-Bio) study. Blood samples were collected at disease progression for circulating tumor DNA (ctDNA) analysis, along with matched primary tumor to assess for acquisition in ABC in a subset of patients. RESULTS: We sequenced 210 ABC samples, demonstrating enrichment compared with primary disease for potentially targetable mutations in HER2 (in 6.19% of samples), AKT1 (7.14%), and NF1 (8.10%). Of these enriched mutations, we show that NF1 mutations were frequently acquired in ABC, not present in the original primary disease. In ER-positive cancer cell line models, loss of NF1 resulted in endocrine therapy resistance, through both ER-dependent and -independent mechanisms. NF1 loss promoted ER-independent cyclin D1 expression, which could be therapeutically targeted with CDK4/6 inhibitors in vitro. Patients with NF1 mutations detected in baseline circulating tumor DNA had a good outcome on the CDK4/6 inhibitor palbociclib and fulvestrant. CONCLUSIONS: Our research identifies multiple therapeutic opportunities for advanced breast cancer and identifies the previously underappreciated acquisition of NF1 mutations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Ciclina D1/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Mutación , Neurofibromina 1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ciclina D1/metabolismo , Femenino , Fulvestrant/administración & dosificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Piperazinas/administración & dosificación , Estudios Prospectivos , Piridinas/administración & dosificación , Resultado del Tratamiento
9.
Artículo en Inglés | MEDLINE | ID: mdl-32914010

RESUMEN

PURPOSE: Although aromatase inhibitor (AI) treatment is effective in estrogen receptor-positive postmenopausal breast cancer, resistance is common and incompletely explained. Genomic instability, as measured by somatic copy number alterations (SCNAs), is important in breast cancer development and prognosis. SCNAs to specific genes may drive intrinsic resistance, or high genomic instability may drive tumor heterogeneity, which allows differential response across tumors and surviving cells to evolve resistance to treatment rapidly. We therefore evaluated the relationship between SCNAs and intrinsic resistance to treatment as measured by a poor antiproliferative response. PATIENTS AND METHODS: SCNAs were determined by single nucleotide polymorphism array in baseline and surgery core-cuts from 73 postmenopausal patients randomly assigned to receive 2 weeks of preoperative AI or no AI in the Perioperative Endocrine Therapy-Individualizing Care (POETIC) trial. Fifty-six samples from the AI group included 28 poor responders (PrRs, less than 60% reduction in protein encoded by the MKI67 gene [Ki-67]) and 28 good responders (GdRs, greater than 75% reduction in Ki-67). Exome sequencing was available for 72 pairs of samples. RESULTS: Genomic instability correlated with Ki-67 expression at both baseline (P < .001) and surgery (P < .001) and was higher in PrRs (P = .048). The SCNA with the largest difference between GdRs and PrRs was loss of heterozygosity observed at 17p (false discovery rate, 0.08), which includes TP53. Nine of 28 PrRs had loss of wild-type TP53 as a result of mutations and loss of heterozygosity compared with three of 28 GdRs. In PrRs, somatic alterations of TP53 were associated with higher genomic instability, higher baseline Ki-67, and greater resistance to AI treatment compared with wild-type TP53. CONCLUSION: We observed that primary tumors with high genomic instability have an intrinsic resistance to AI treatment and do not require additional evolution to develop resistance to estrogen deprivation therapy.

10.
Aging (Albany NY) ; 10(5): 1027-1052, 2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29779018

RESUMEN

Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies. However, it remains unclear how these particular interventions act mechanistically to produce their beneficial effects. Here, we investigated transcriptional responses in wild-type and IRS1 null mice fed an ad libitum diet (WTAL and KOAL) or fed a 30% DR diet (WTDR or KODR). Using an RNAseq approach we noted a high correlation coefficient of differentially expressed genes existed within the same tissue across WTDR and KOAL mice and many metabolic features were shared between these mice. Overall, we report that significant overlap exists in the tissue-specific transcriptional response between long-lived DR mice and IRS1 null mice. However, there was evidence of disconnect between transcriptional signatures and certain phenotypic measures between KOAL and KODR, in that additive effects on body mass were observed but at the transcriptional level DR induced a unique set of genes in these already long-lived mice.


Asunto(s)
Restricción Calórica , Proteínas Sustrato del Receptor de Insulina/deficiencia , Longevidad/fisiología , Transcripción Genética/fisiología , Animales , Ratones , Ratones Noqueados
11.
Front Mol Neurosci ; 10: 279, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955198

RESUMEN

We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3' untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs. However, the role of APA remains rather unexplored in neurodevelopmental conditions. In the human brain, where transcripts have the longest 3' UTRs and are thus likely to be under more complex post-transcriptional regulation, erratic APA could be particularly detrimental. In the context of ASD, a condition that affects individuals in markedly different ways and whose symptoms exhibit a spectrum of severity, APA dysregulation could be amplified or dampened depending on the individual and the extent of the effect on specific genes would likely vary with genetic and environmental factors. If this hypothesis is correct, dysregulated APA events might be responsible for certain aspects of the phenotypes associated with ASD. Evidence supporting our hypothesis is derived from standard RNA-seq transcriptomic data but we suggest that future experiments should focus on techniques that probe the actual poly-adenylation site (3' sequencing). To address issues arising from the use of post-mortem tissue and low numbers of heterogeneous samples affected by confounding factors (such as the age, gender and health of the individuals), carefully controlled in vitro systems will be required to model the effect of calcium signaling dysregulation in the ASD brain.

12.
Transcription ; 6(1): 7-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25603281

RESUMEN

Gene expression is often controlled by transcriptional repressors during development. Many transcription factors lack intrinsic repressive activity but recruit co-factors that inhibit productive transcription. Here we discuss new insights and models for repression mediated by the Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressor proteins.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Transcripción Genética , Animales , Humanos , Proteínas Represoras/metabolismo
13.
PLoS Genet ; 10(2): e1004109, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516399

RESUMEN

The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ß and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK ß subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/genética , Proteínas de Caenorhabditis elegans/genética , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/metabolismo , Factores de Transcripción/genética , Proteínas Quinasas Activadas por AMP/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Longevidad/genética , Isoformas de Proteínas/genética , Receptor de Insulina/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
14.
Mol Syst Biol ; 7: 502, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21694719

RESUMEN

FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxo-independent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica/métodos , Insulina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación hacia Abajo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción GATA/metabolismo , Genoma de los Insectos , Estrés Oxidativo , Fenotipo , Transducción de Señal , Somatomedinas/metabolismo , Regulación hacia Arriba
15.
Genome Biol ; 8(6): R125, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17594492

RESUMEN

The probe sequence of short oligonucleotides in Affymetrix microarray experiments can have a significant influence on present/absent calls of probesets with absent target transcripts. Probesets enriched for central Ts and depleted of central As in the perfect-match probes tend to be falsely classified as having present transcripts. Correction of non-specific binding for both perfect-match and mismatch probes using probe-sequence models can partially remove the probe-sequence bias and result in better performance of the MAS 5.0 algorithm.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Sondas de Oligonucleótidos/genética , Algoritmos , Animales , Disparidad de Par Base , Emparejamiento Base , Drosophila melanogaster , ARN/genética
16.
Genome Biol ; 8(6): R126, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17594493

RESUMEN

BACKGROUND: The availability of a recently published large-scale spike-in microarray dataset helps us to understand the influence of probe sequence in non-specific binding (NSB) signal and enables the benchmarking of several models for the estimation of NSB. In a typical microarray experiment using Affymetrix whole genome chips, 30% to 50% of the probes will apparently have absent target transcripts and show only NSB signal, and these probes can have significant repercussions for normalization and the statistical analysis of the data if NSB is not estimated correctly. RESULTS: We have found that the MAS5 perfect match-mismatch (PM-MM) model is a poor model for estimation of NSB, and that the Naef and Zhang sequence-based models can reasonably estimate NSB. In general, using the GC robust multi-array average, which uses Naef binding affinities, to calculate NSB (GC-NSB) outperforms other methods for detecting differential expression. However, there is an intensity dependence of the best performing methods for generating probeset expression values. At low intensity, methods using GC-NSB outperform other methods, but at medium intensity, MAS5 PM-MM methods perform best, and at high intensity, MAS5 PM-MM and Zhang's position-dependent nearest-neighbor (PDNN) methods perform best. CONCLUSION: A combined statistical analysis using the MAS5 PM-MM, GC-NSB and PDNN methods to generate probeset values results in an improved ability to detect differential expression and estimates of false discovery rates compared with the individual methods. Additional improvements in detecting differential expression can be achieved by a strict elimination of empty probesets before normalization. However, there are still large gaps in our understanding of the Affymetrix GeneChip technology, and additional large-scale datasets, in which the concentration of each transcript is known, need to be produced before better models of specific binding can be created.


Asunto(s)
Algoritmos , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Sondas de ADN/genética , Drosophila melanogaster , Perfilación de la Expresión Génica , ARN/genética
17.
Physiol Genomics ; 27(3): 187-200, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-16882887

RESUMEN

Caloric restriction (CR) increases healthy life span in a range of organisms. The underlying mechanisms are not understood but appear to include changes in gene expression, protein function, and metabolism. Recent studies demonstrate that acute CR alters mortality rates within days in flies. Multitissue transcriptional changes and concomitant metabolic responses to acute CR have not been described. We generated whole genome RNA transcript profiles in liver, skeletal muscle, colon, and hypothalamus and simultaneously measured plasma metabolites using proton nuclear magnetic resonance in mice subjected to acute CR. Liver and muscle showed increased gene expressions associated with fatty acid metabolism and a reduction in those involved in hepatic lipid biosynthesis. Glucogenic amino acids increased in plasma, and gene expression for hepatic gluconeogenesis was enhanced. Increased expression of genes for hormone-mediated signaling and decreased expression of genes involved in protein binding and development occurred in hypothalamus. Cell proliferation genes were decreased and cellular transport genes increased in colon. Acute CR captured many, but not all, hepatic transcriptional changes of long-term CR. Our findings demonstrate a clear transcriptional response across multiple tissues during acute CR, with congruent plasma metabolite changes. Liver and muscle switched gene expression away from energetically expensive biosynthetic processes toward energy conservation and utilization processes, including fatty acid metabolism and gluconeogenesis. Both muscle and colon switched gene expression away from cellular proliferation. Mice undergoing acute CR rapidly adopt many transcriptional and metabolic changes of long-term CR, suggesting that the beneficial effects of CR may require only a short-term reduction in caloric intake.


Asunto(s)
Restricción Calórica , Colon/metabolismo , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Transcripción Genética , Animales , Análisis Químico de la Sangre , Regulación hacia Abajo , Ingestión de Energía , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Organismos Libres de Patógenos Específicos , Regulación hacia Arriba
18.
Mol Cell Biol ; 25(13): 5514-22, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15964807

RESUMEN

Using a tissue-specific microarray screen in combination with chromosome anomalies in the mouse, we identified a novel imprinted gene, Inpp5f_v2 on mouse chromosome 7. Characterization of this gene reveals a 3.2-kb transcript that is paternally expressed in the brain. Inpp5f_v2 is a variant of the related 4.7-kb transcript, Inpp5f, an inositol phosphatase gene that is biallelically expressed in the mouse. Inpp5f_v2 uses an alternative transcriptional start site within an intron of Inpp5f and thus has a unique alternative first exon. Whereas other imprinted transcripts have a unique first exon located within intron 1 of a longer transcript variant (such as at the Gnas and WT1 loci), Inpp5f_v2 is the first example of which we are aware in which the alternative first exon of an imprinted gene is embedded in a downstream intron (intron 15) of a transcript variant. The CpG island associated with the non-imprinted Inpp5f gene is hypomethylated on both alleles, a finding consistent with biallelic expression, whereas the CpG island present 5' of Inpp5f_v2 is differentially methylated on the maternal versus paternal alleles consistent with its imprinting status.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Expresión Génica , Variación Genética , Impresión Genómica , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Alelos , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Mapeo Cromosómico , Cromosomas , Cruzamientos Genéticos , Exones , Hibridación in Situ , Inositol Polifosfato 5-Fosfatasas , Intrones , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Mutagénesis Sitio-Dirigida , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo Genético , Análisis de Secuencia de ADN , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...