Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 9: 801507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957123

RESUMEN

Septins were first described in yeast. Due to extensive research in non-yeast cells, Septins are now recognized across all species as important players in the regulation of the cytoskeleton, in the establishment of polarity, for migration, vesicular trafficking and scaffolding. Stem cells are primarily quiescent cells, and this actively maintained quiescent state is critical for proper stem cell function. Equally important though, stem cells undergo symmetric or asymmetric division, which is likely linked to the level of symmetry found in the mother stem cell. Due to the ability to organize barriers and be able to break symmetry in cells, Septins are thought to have a significant impact on organizing quiescence as well as the mode (symmetric vs asymmetric) of stem cell division to affect self-renewal versus differentiation. Mechanisms of regulating mammalian quiescence and symmetry breaking by Septins are though still somewhat elusive. Within this overview article, we summarize current knowledge on the role of Septins in stem cells ranging from yeast to mice especially with respect to quiescence and asymmetric division, with a special focus on hematopoietic stem cells.

2.
EMBO Rep ; 22(12): e52931, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661963

RESUMEN

Aging of hematopoietic stem cells (HSCs) is caused by the elevated activity of the small RhoGTPase Cdc42 and an apolar distribution of proteins. Mechanisms by which Cdc42 activity controls polarity of HSCs are not known. Binder of RhoGTPases proteins (Borgs) are known effector proteins of Cdc42 that are able to regulate the cytoskeletal Septin network. Here, we show that Cdc42 interacts with Borg4, which in turn interacts with Septin7 to regulate the polar distribution of Cdc42, Borg4, and Septin7 within HSCs. Genetic deletion of either Borg4 or Septin7 results in a reduced frequency of HSCs polar for Cdc42 or Borg4 or Septin7, a reduced engraftment potential and decreased lymphoid-primed multipotent progenitor (LMPP) frequency in the bone marrow. Taken together, our data identify a Cdc42-Borg4-Septin7 axis essential for the maintenance of polarity within HSCs and for HSC function and provide a rationale for further investigating the role of Borgs and Septins in the regulation of compartmentalization within stem cells.


Asunto(s)
Proteínas del Citoesqueleto , Células Madre Hematopoyéticas , Septinas , Proteínas de Unión al GTP rho , Células Madre Hematopoyéticas/metabolismo , Septinas/genética , Septinas/metabolismo , Transducción de Señal
3.
Clin Immunol Commun ; 1: 17-19, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38620937

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged at the end of 2019, causing the coronavirus disease (COVID-19). The main sources of infections are infected and asymptomatic persons. One major problem of the pandemic are the diverse symptoms and the varying manifestations of the illness. In this study, the IgG level recognizing the RBD of SARS-CoV-2 was determined within 336 volunteers from the environment of the University of Applied Sciences Wiener Neustadt. The aims of this study were to identify the estimated number of undiscovered COVID-19 infections and the corresponding antibody levels. In total, 11.3% of the nonvaccinated probands had a positive IgG antibody titer against SARS-CoV-2, whereas 4.0% did not test positive for SARS-CoV-2 or had never been tested at the time of sampling. Probands in this study reported tiredness (57,5%), ageusia/anosmia (55%) and headache (47,5%) as most frequent symptoms.

4.
PLoS One ; 13(4): e0195034, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29668710

RESUMEN

Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9-10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes.


Asunto(s)
ADN de Cloroplastos/genética , Variación Genética , Myrtaceae/clasificación , Myrtaceae/genética , Australia , ADN Ribosómico/genética , Filogenia , Filogeografía , Hojas de la Planta/genética , Análisis de Secuencia de ADN
5.
Mitochondrial DNA B Resour ; 3(1): 399-400, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33474182

RESUMEN

We assembled the plastome of the temperate, Southern Hemisphere liana Muehlenbeckia australis from high throughput sequencing data (paired-end Illumina reads) generated from total genomic DNA sequencing libraries. M. australis' chloroplast genome sequence (GenBank: MG604297) is 163,484 bp in length and composed of long single copy (LSC; 88,166 bp) and short single copy (SSC; 13,486 bp) regions flanked by inverted repeats (IR; 30,916 bp each) typical for angiosperms. The plastome includes 131 genes comprising 83 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes, two possible pseudogenes, psbL and rpl23 with internal stop codons, and truncated repeats of ndhF and rps19 at IR boundaries.

6.
PLoS One ; 8(4): e61261, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23585884

RESUMEN

The buckwheat family Polygonaceae is a diverse group of plants and is a good model for investigating biogeography, breeding systems, coevolution with symbionts such as ants and fungi, functional trait evolution, hybridization, invasiveness, morphological plasticity, pollen morphology and wood anatomy. The main goal of this study was to obtain age estimates for Polygonaceae by calibrating a Bayesian phylogenetic analysis, using a relaxed molecular clock with fossil data. Based on the age estimates, we also develop hypotheses about the historical biogeography of the Southern Hemisphere group Muehlenbeckia. We are interested in addressing whether vicariance or dispersal could account for the diversification of Muehlenbeckia, which has a "Gondwanan" distribution. Eighty-one species of Polygonaceae were analysed with MrBayes to infer species relationships. One nuclear (nrITS) and three chloroplast markers (the trnL-trnF spacer region, matK and ndhF genes) were used. The molecular data were also analysed with Beast to estimate divergence times. Seven calibration points including fossil pollen and a leaf fossil of Muehlenbeckia were used to infer node ages. Results of the Beast analyses indicate an age of 110.9 (exponential/lognormal priors)/118.7 (uniform priors) million years (Myr) with an uncertainty interval of (90.7-125.0) Myr for the stem age of Polygonaceae. This age is older than previously thought (Maastrichtian, approximately 65.5-70.6 Myr). The estimated divergence time for Muehlenbeckia is 41.0/41.6 (39.6-47.8) Myr and its crown clade is 20.5/22.3 (14.2-33.5) Myr old. Because the breakup of Gondwana occurred from 95-30 Myr ago, diversification of Muehlenbeckia is best explained by oceanic long-distance and maybe stepping-stone dispersal rather than vicariance. This study is the first to give age estimates for clades of Polygonaceae and functions as a jumping-off point for future studies on the historical biogeography of the family.


Asunto(s)
Evolución Molecular , Fósiles , Polygonaceae/genética , Teorema de Bayes , Cloroplastos/genética , Genes de Plantas , Filogenia , Polygonaceae/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA