Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(5): 1549-1561, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632869

RESUMEN

ATP is a universal energy currency that is essential for life. l-Arginine degradation via deamination is an elegant way to generate ATP in synthetic cells, which is currently limited by a slow l-arginine/l-ornithine exchange. We are now implementing a new antiporter with better kinetics to obtain faster ATP recycling. We use l-arginine-dependent ATP formation for the continuous synthesis and export of glycerol 3-phosphate by including glycerol kinase and the glycerol 3-phosphate/Pi antiporter. Exported glycerol 3-phosphate serves as a precursor for the biosynthesis of phospholipids in a second set of vesicles, which forms the basis for the expansion of the cell membrane. We have therefore developed an out-of-equilibrium metabolic network for ATP recycling, which has been coupled to lipid synthesis. This feeder-utilizer system serves as a proof-of-principle for the systematic buildup of synthetic cells, but the vesicles can also be used to study the individual reaction networks in confinement.


Asunto(s)
Adenosina Trifosfato , Arginina , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Células Artificiales/metabolismo , Glicerofosfatos/metabolismo , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Lípidos/biosíntesis , Fosfolípidos/metabolismo , Redes y Vías Metabólicas
2.
Open Biol ; 11(4): 200406, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33823661

RESUMEN

The ATP-binding cassette transporter GlnPQ is an essential uptake system that transports glutamine, glutamic acid and asparagine in Gram-positive bacteria. It features two extra-cytoplasmic substrate-binding domains (SBDs) that are linked in tandem to the transmembrane domain of the transporter. The two SBDs differ in their ligand specificities, binding affinities and their distance to the transmembrane domain. Here, we elucidate the effects of the tandem arrangement of the domains on the biochemical, biophysical and structural properties of the protein. For this, we determined the crystal structure of the ligand-free tandem SBD1-2 protein from Lactococcus lactis in the absence of the transporter and compared the tandem to the isolated SBDs. We also used isothermal titration calorimetry to determine the ligand-binding affinity of the SBDs and single-molecule Förster resonance energy transfer (smFRET) to relate ligand binding to conformational changes in each of the domains of the tandem. We show that substrate binding and conformational changes are not notably affected by the presence of the adjoining domain in the wild-type protein, and changes only occur when the linker between the domains is shortened. In a proof-of-concept experiment, we combine smFRET with protein-induced fluorescence enhancement (PIFE-FRET) and show that a decrease in SBD linker length is observed as a linear increase in donor-brightness for SBD2 while we can still monitor the conformational states (open/closed) of SBD1. These results demonstrate the feasibility of PIFE-FRET to monitor protein-protein interactions and conformational states simultaneously.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Fenómenos Químicos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Análisis Espectral , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Sci Adv ; 6(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208376

RESUMEN

(Micro)organisms are exposed to fluctuating environmental conditions, and adaptation to stress is essential for survival. Increased osmolality (hypertonicity) causes outflow of water and loss of turgor and is dangerous if the cell is not capable of rapidly restoring its volume. The osmoregulatory adenosine triphosphate-binding cassette transporter OpuA restores the cell volume by accumulating large amounts of compatible solute. OpuA is gated by ionic strength and inhibited by the second messenger cyclic-di-AMP, a molecule recently shown to affect many cellular processes. Despite the master regulatory role of cyclic-di-AMP, structural and functional insights into how the second messenger regulates (transport) proteins on the molecular level are lacking. Here, we present high-resolution cryo-electron microscopy structures of OpuA and in vitro activity assays that show how the osmoregulator OpuA is activated by high ionic strength and how cyclic-di-AMP acts as a backstop to prevent unbridled uptake of compatible solutes.

4.
Elife ; 82019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30900991

RESUMEN

Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases, similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Especificidad por Sustrato
5.
J Mol Biol ; 430(8): 1249-1262, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29486154

RESUMEN

GlnPQ is an ATP-binding cassette importer with a unique domain organization and intricate transport behavior. The protein has two extracytoplamic substrate-binding domains (SBDs) per membrane subunit, each with different specificity for amino acids and different spacing to the translocator domain. We determined the effect of the length and structure of the linkers, which connect the SBDs to each other and to the membrane-embedded translocator domain, on the transport by GlnPQ. We reveal that varying the linker length impacts transport in a dual manner that depends on the conformational dynamics of the SBD. Varying the linker length not only changes the time for the SBD to find the translocator (docking) but also changes the probability to release the substrate again, thus altering the transport efficiency. On the basis of the experimental data and mathematical modeling, we calculate the docking efficiency as function of linker length and lifetime of the closed conformation. Importantly, not only linker length but also features in the sequence are important for efficient delivery of substrate from SBD to the translocator. We show that the linkers provide a platform for SBD docking and are not merely flexible structures.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Lactococcus lactis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Modelos Moleculares , Modelos Teóricos , Unión Proteica , Dominios Proteicos
6.
J Mol Biol ; 430(6): 853-866, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29432725

RESUMEN

Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato , Proteínas Bacterianas/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Hidrólisis , Cinética , Liposomas/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteolípidos
7.
J Am Chem Soc ; 139(51): 18640-18646, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29206456

RESUMEN

Protein conformations play crucial roles in most, if not all, biological processes. Here we show that the current carried through a nanopore by ions allows monitoring conformational changes of single and native substrate-binding domains (SBD) of an ATP-Binding Cassette importer in real-time. Comparison with single-molecule Förster Resonance Energy Transfer and ensemble measurements revealed that proteins trapped inside the nanopore have bulk-like properties. Two ligand-free and two ligand-bound conformations of SBD proteins were inferred and their kinetic constants were determined. Remarkably, internalized proteins aligned with the applied voltage bias, and their orientation could be controlled by the addition of a single charge to the protein surface. Nanopores can thus be used to immobilize proteins on a surface with a specific orientation, and will be employed as nanoreactors for single-molecule studies of native proteins. Moreover, nanopores with internal protein adaptors might find further practical applications in multianalyte sensing devices.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Nanoporos , Nanotecnología/métodos , Transferencia Resonante de Energía de Fluorescencia , Proteínas Inmovilizadas/química , Cinética , Ligandos , Conformación Proteica , Imagen Individual de Molécula
8.
J Bacteriol ; 198(3): 477-85, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26553850

RESUMEN

UNLABELLED: The GlnPQ transporter from Lactococcus lactis has the remarkable feature of having two substrate-binding domains (SBDs) fused to the N terminus of the transmembrane domain (TMD), and thus four SBDs are present in the homodimeric complex. Although X-ray structures and ligand binding data are available for both SBDs, little is known of how different amino acids compete with each other for transport via GlnPQ. Here we show GlnPQ has a broader substrate specificity than previously thought, with the ability to take up asparagine, glutamine, and glutamic acid, albeit via different routes and with different affinities. Asparagine and glutamine compete with each other at the level of binding to SBD1 and SBD2 (with differences in dissociation constant), but at the same time SBD1 and SBD2 compete with each other at the level of interaction with the translocator domain (with differences in affinity constant and rate of transport). Although glutamine transport via SBD1 is outcompeted by physiological concentrations of asparagine, SBD2 ensures high rates of import of the essential amino acid glutamine. Taken together, this study demonstrates that even in the presence of competing asparagine concentrations, GlnPQ has a high capacity to transport glutamine, which matches the high needs of the cell for glutamine and glutamate. IMPORTANCE: GlnPQ is an ATP-binding cassette (ABC) transporter for glutamine, glutamic acid, and asparagine. The system is essential in various Gram-positive bacteria, including L. lactis and several pathogens. Here we show how the amino acids compete with each other for binding to the multiple SBDs of GlnPQ and how these SBDs compete with each other for substrate delivery to the transporter. Overall, our results show that GlnPQ has evolved to transport diverse substrates via different paths and to optimally acquire the abundant and essential amino acid glutamine.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lactococcus lactis/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas Bacterianas/genética , Ácido Glutámico/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Unión Proteica , Estructura Terciaria de Proteína
9.
Biochem Soc Trans ; 43(5): 1041-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517920

RESUMEN

ATP-binding cassette (ABC) transporters play crucial roles in cellular processes, such as nutrient uptake, drug resistance, cell-volume regulation and others. Despite their importance, all proposed molecular models for transport are based on indirect evidence, i.e. functional interpretation of static crystal structures and ensemble measurements of function and structure. Thus, classical biophysical and biochemical techniques do not readily visualize dynamic structural changes. We recently started to use single-molecule fluorescence techniques to study conformational states and changes of ABC transporters in vitro, in order to observe directly how the different steps during transport are coordinated. This review summarizes our scientific strategy and some of the key experimental advances that allowed the substrate-binding mechanism of prokaryotic ABC importers and the transport cycle to be explored. The conformational states and transitions of ABC-associated substrate-binding domains (SBDs) were visualized with single-molecule FRET, permitting a direct correlation of structural and kinetic information of SBDs. We also delineated the different steps of the transport cycle. Since information in such assays are restricted by proper labelling of proteins with fluorescent dyes, we present a simple approach to increase the amount of protein with FRET information based on non-specific interactions between a dye and the size-exclusion chromatography (SEC) column material used for final purification.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Conformación Proteica , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Carbocianinas/química , Cromatografía en Gel/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Unión Proteica , Reproducibilidad de los Resultados
10.
Nat Struct Mol Biol ; 22(1): 57-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25486304

RESUMEN

The conformational dynamics in ABC transporters is largely elusive. The ABC importer GlnPQ from Lactococcus lactis has different covalently linked substrate-binding domains (SBDs), thus making it an excellent model system to elucidate the dynamics and role of the SBDs in transport. We demonstrate by single-molecule spectroscopy that the two SBDs intrinsically transit from open to closed ligand-free conformation, and the proteins capture their amino acid ligands via an induced-fit mechanism. High-affinity ligands elicit transitions without changing the closed-state lifetime, whereas low-affinity ligands dramatically shorten it. We show that SBDs in the closed state compete for docking onto the translocator, but remarkably the effect is strongest without ligand. We find that the rate-determining steps depend on the SBD and the amino acid transported. We conclude that the lifetime of the closed conformation controls both SBD docking to the translocator and substrate release.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Lactococcus lactis/enzimología , Transporte Biológico , Transferencia Resonante de Energía de Fluorescencia , Lactococcus lactis/química , Lactococcus lactis/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica
11.
Structure ; 21(10): 1879-88, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-23994008

RESUMEN

The ATP-binding cassette (ABC) transporter GlnPQ is an essential uptake system for amino acids in gram-positive pathogens and related nonpathogenic bacteria. The transporter has tandem substrate-binding domains (SBDs) fused to each transmembrane domain, giving rise to four SBDs per functional transporter complex. We have determined the crystal structures and ligand-binding properties of the SBDs of GlnPQ from Enterococcus faecalis, Streptococcus pneumoniae, and Lactococcus lactis. The tandem SBDs differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. The combined structural, functional, and thermodynamic analysis revealed the roles of individual residues in determining the substrate affinity. We succeeded in converting a low-affinity SBD into a high-affinity receptor and vice versa. Our data indicate that a small number of residues that reside in the binding pocket constitute the major affinity determinants of the SBDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas Bacterianas/química , Enterococcus faecalis , Lactococcus lactis , Streptococcus pneumoniae , Transportadoras de Casetes de Unión a ATP/genética , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Glutamina/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
J Biol Chem ; 287(44): 37165-70, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22948145

RESUMEN

We present the crystal structure of the pheromone receptor protein PrgZ from Enterococcus faecalis in complex with the heptapeptide cCF10 (LVTLVFV), which is used in signaling between conjugative recipient and donor cells. Comparison of PrgZ with homologous oligopeptide-binding proteins (AppA and OppA) explains the high specificity of PrgZ for hydrophobic heptapeptides versus the promiscuity of peptide binding in the homologous proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Enterococcus faecalis , Oligopéptidos/química , Feromonas/química , Secuencia de Aminoácidos , Sitios de Unión , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Homología Estructural de Proteína , Temperatura de Transición
13.
J Biol Chem ; 286(43): 37280-91, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21878634

RESUMEN

The cystathionine ß-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine ß-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Cistationina betasintasa , Lactococcus lactis/enzimología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Lactococcus lactis/genética , Concentración Osmolar , Estructura Terciaria de Proteína
14.
Nat Protoc ; 3(2): 256-66, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18274528

RESUMEN

In this protocol, we describe a procedure for incorporating ATP-binding cassette (ABC) transporters into large unilamellar vesicles (LUVs) and assays to determine ligand binding and solute translocation by these membrane-reconstituted systems. The reconstitution technique as described has been optimized for ABC transporters but can be readily adapted for other types of transport systems. Purified transporters are inserted into detergent-destabilized preformed liposomes and detergent is subsequently removed by adsorption onto polystyrene beads. Next, Mg-ATP or an ATP-regenerating system is incorporated into the vesicle lumen by one or more cycles of freezing-thawing, followed by extrusion through polycarbonate filters to obtain unilamellar vesicles. Binding and translocation of substrates are measured using isotope-labeled ligands and rapid filtration to separate the proteoliposomes from the surrounding medium. Quantitative information is obtained about dissociation constants (K(d)) for ligand binding, number of binding-sites, transport affinities (K(m)), rates of transport, and the activities of transporter molecules with opposite orientations in the membrane. The full protocol can be completed within 4-5 d.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Membranas/fisiología , Liposomas Unilamelares/metabolismo , Transporte Biológico , Detergentes , Lípidos de la Membrana , Proteínas de Transporte de Membrana/química , Octoxinol
15.
J Biol Chem ; 281(40): 29830-9, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16844687

RESUMEN

The ATPase subunit of the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis has a C-terminal extension, the tandem cystathionine beta-synthase (CBS) domain, which constitutes the sensor that allows the transporter to sense and respond to osmotic stress (Biemans-Oldehinkel, E., Mahmood, N. A. B. N., and Poolman, B. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 10624-10629). C-terminal of the tandem CBS domain is an 18-residue anionic tail (DIPDEDEVEEIEKEEENK). To investigate the ion specificity of the full transporter, we probed the activity of inside-out reconstituted wild-type OpuA and the anionic tail deletion mutant OpuADelta12; these molecules have the tandem CBS domains facing the external medium. At a mole fraction of 40% of anionic lipids in the membrane, the threshold ionic strength for activation of OpuA was approximately 0.15, irrespective of the electrolyte composition of the medium. At equivalent concentrations, bivalent cations (Mg(2+) and Ba(2+)) were more effective in activating OpuA than NH(4)(+), K(+), Na(+), or Li(+), consistent with an ionic strength-based sensing mechanism. Surprisingly, Rb(+) and Cs(+) were potent inhibitors of wild-type OpuA, and 0.1 mM RbCl was sufficient to completely inhibit the transporter even in the presence of 0.2 M KCl. Rb(+) and Cs(+) were no longer inhibitory in OpuADelta12, indicating that the anionic C-terminal tail participates in the formation of a binding site for large alkali metal ions. Compared with OpuADelta12, wild-type OpuA required substantially less potassium ions (the dominant ion under physiological conditions) for activation. Our data lend new support for the contention that the CBS module in OpuA constitutes the ionic strength sensor whose activity is modulated by the C-terminal anionic tail.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/fisiología , Lactococcus lactis/metabolismo , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cationes Bivalentes/química , Cationes Monovalentes/química , Cistationina betasintasa/química , Cistationina betasintasa/fisiología , Lactococcus lactis/enzimología , Lactococcus lactis/fisiología , Metales/química , Datos de Secuencia Molecular , Concentración Osmolar , Cloruro de Potasio/química , Eliminación de Secuencia , Especificidad de la Especie
16.
J Biol Chem ; 280(25): 23785-90, 2005 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15795228

RESUMEN

We report on the functional characterization of GlnPQ, an ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains. The first predicted transmembrane helix of GlnP was cleaved off in the mature protein and most likely serves as the signal sequence for the extracytoplasmic substrate-binding domains. Deletion analysis showed that the substrate-binding domain, in the primary sequence of GlnP nearest to the translocator domain, is used as the receptor that delivers the substrate to the translocator. Membrane reconstitution of the detergent-solubilized and purified GlnPQ complex yielded proteoliposomes that transported glutamine and glutamic acid at the expense of ATP. The transport activity of GlnPQ increased with lumenal salt concentration and internal pH, but the mechanism of ionic activation of the transporter is distinct from that of other osmoregulatory ATP-binding cassette transporters and does not depend on the presence of anionic lipids. The regulation of GlnPQ conforms to an electrostatic switch in which protein domain(s) and low molecular weight electrolytes participate.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Lactococcus lactis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Concentración de Iones de Hidrógeno , Lactococcus lactis/genética , Datos de Secuencia Molecular , Concentración Osmolar , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
17.
J Mol Biol ; 346(3): 733-43, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15713459

RESUMEN

The mannitol permease (EII(Mtl)) from Escherichia coli couples mannitol transport to phosphorylation of the substrate. Renewed topology prediction of the membrane-embedded C domain suggested that EII(Mtl) contains more membrane-embedded segments than the six proposed previously on the basis of a PhoA fusion study. Cysteine accessibility was used to confirm this notion. Since cysteine 384 in the cytoplasmic B domain is crucial for the phosphorylation activity of EII(Mtl), all cysteine mutants contained this activity-linked cysteine residue in addition to those introduced for probing the membrane topology of the protein. To distinguish between the activity-linked cysteine and the probed cysteine, either trypsin was used to specifically digest the two cytoplasmic domains (A and B), thereby removing Cys384, or Cys384 was protected by phosphorylation from alkylation by N-ethylmaleimide (NEM). Our data show that upon phosphorylation EII(Mtl) undergoes major conformational changes, whereby residues in the putative first cytoplasmic loop become accessible to NEM. Other residues in this loop were accessible to NEM in intact cells and inside-out membrane vesicles, but cysteine residues at these positions only reacted with the membrane-impermeable sulfhydryl reagent from the periplasmic side of the protein. These and other results suggest that the predicted loop between TM2 and TM3 may fold back into the membrane and form part of the translocation path.


Asunto(s)
Escherichia coli/enzimología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Membrana Celular/enzimología , Cisteína/química , Citoplasma/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli , Etilmaleimida , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos , Mutagénesis Sitio-Dirigida , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reactivos de Sulfhidrilo , Tripsina
18.
J Biol Chem ; 280(10): 8784-92, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15613476

RESUMEN

The functions of the mechanosensitive channels from Lactococcus lactis were determined by biochemical, physiological, and electrophysiological methods. Patch-clamp studies showed that the genes yncB and mscL encode MscS and MscL-like channels, respectively, when expressed in Escherichia coli or if the gene products were purified and reconstituted in proteoliposomes. However, unless yncB was expressed in trans, wild type membranes of L. lactis displayed only MscL activity. Membranes prepared from an mscL disruption mutant did not show any mechanosensitive channel activity, irrespective of whether the cells had been grown on low or high osmolarity medium. In osmotic downshift assays, wild type cells survived and retained 20% of the glycine betaine internalized under external high salt conditions. On the other hand, the mscL disruption mutant retained 40% of internalized glycine betaine and was significantly compromised in its survival upon osmotic downshifts. The data strongly suggest that L. lactis uses MscL as the main mechanosensitive solute release system to protect the cells under conditions of osmotic downshift.


Asunto(s)
Acuaporinas/fisiología , Canales de Calcio/fisiología , Lactococcus lactis/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Acuaporinas/química , Acuaporinas/genética , Secuencia de Bases , Canales de Calcio/química , Canales de Calcio/genética , Membrana Celular/fisiología , Cistina , Cartilla de ADN , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Alineación de Secuencia , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 277(17): 14717-23, 2002 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-11854301

RESUMEN

A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.


Asunto(s)
Cisteína/metabolismo , Escherichia coli/enzimología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Secuencia de Aminoácidos , Dimerización , Proteínas de Escherichia coli , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos , Mutagénesis Sitio-Dirigida , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...