Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 102(3): 711-24, 2005 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-15681092

RESUMEN

A combination of A-B and B-C block copolymers was used to encapsulate DNA inside pEG coated particles, where A is a cationic block (poly(dimethylaminoethyl methacrylate), pDMAEMA) for DNA binding and condensation, B is a hydrophobic block (poly(butylmethacrylate), pBMA) and C is a polyethylene glycol (pEG) block. The AB and BC block copolymers were synthesized by transition metal mediated radical polymerization. The AB block copolymer had a fixed pBMA molecular weight of 3800 g/mol and a varying pDMAEMA molecular weight (from 22 to 65 kg/mol), the BC block copolymer had a fixed composition (pBMA 9000 g/mol; pEG 2000 g/mol). Plasmid DNA containing particles were made via a detergent dialysis method. By this method, particles of approximately 120 nm, as determined by dynamic light scattering (DLS), with a near neutral charge were formed, independent of the DMAEMA block size. DLS measurements and gel electrophoresis indicated that the particles were very stable in cell culture medium at 37 degrees C and resistant to anionic exchange by poly-l-aspartic acid. The particles were able to transfect COS-7 and OVCAR-3 cells with minor toxicity if incubated for 1 or 4 h; incubation for 24 h resulted in an increased toxicity. This paper shows that small polyplexes with near neutral charge can be obtained via a convenient detergent dialysis method using pDMAEMA-b-pBMA and pBMA-b-pEG. These particles may be interesting for in vivo experiments where particles with high positive charges have adverse interactions with blood components.


Asunto(s)
Micelas , Polietilenglicoles/administración & dosificación , Transfección/métodos , Animales , Células COS , Chlorocebus aethiops , Polietilenglicoles/química , Polímeros/administración & dosificación , Polímeros/química
2.
Biomacromolecules ; 5(1): 32-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14715005

RESUMEN

One of the crucial steps in gene delivery with cationic polymers is the escape of the polymer/DNA complexes ("polyplexes") from the endosome. A possible way to enhance endosomal escape is the use of cationic polymers with a pKa around or slightly below physiological pH ("proton sponge"). We synthesized a new polymer with two tertiary amine groups in each monomeric unit [poly(2-methyl-acrylic acid 2-[(2-(dimethylamino)-ethyl)-methyl-amino]-ethyl ester), abbreviated as pDAMA]. One pKa of the monomer is approximately 9, providing cationic charge at physiological pH, and thus DNA binding properties, the other is approximately 5 and provides endosomal buffering capacity. Using dynamic light scattering and zeta potential measurements, it was shown that pDAMA is able to condense DNA in small particles with a surface charge depending on the polymer/DNA ratio. pDAMA has a substantial lower toxicity than other polymeric transfectants, but in vitro, the transfection activity of the pDAMA-based polyplexes was very low. The addition of a membrane disruptive peptide to pDAMA-based polyplexes considerably increased the transfection efficiency without adversely affecting the cytotoxicity of the system. This indicates that the pDAMA-based polyplexes alone are not able to mediate escape from the endosomes via the proton sponge mechanism. Our observations imply that the proton sponge hypothesis is not generally applicable for polymers with buffering capacity at low pH and gives rise to a reconsideration of this hypothesis.


Asunto(s)
Endosomas/metabolismo , Técnicas de Transferencia de Gen , Ácidos Polimetacrílicos/metabolismo , Animales , Células COS , Cationes , ADN/metabolismo , Concentración de Iones de Hidrógeno , Ácidos Polimetacrílicos/síntesis química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA