Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 19(4)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38626775

RESUMEN

Animals have evolved highly effective locomotion capabilities in terrestrial, aerial, and aquatic environments. Over life's history, mass extinctions have wiped out unique animal species with specialized adaptations, leaving paleontologists to reconstruct their locomotion through fossil analysis. Despite advancements, little is known about how extinct megafauna, such as the Ichthyosauria one of the most successful lineages of marine reptiles, utilized their varied morphologies for swimming. Traditional robotics struggle to mimic extinct locomotion effectively, but the emerging soft robotics field offers a promising alternative to overcome this challenge. This paper aims to bridge this gap by studyingMixosauruslocomotion with soft robotics, combining material modeling and biomechanics in physical experimental validation. Combining a soft body with soft pneumatic actuators, the soft robotic platform described in this study investigates the correlation between asymmetrical fins and buoyancy by recreating the pitch torque generated by extinct swimming animals. We performed a comparative analysis of thrust and torque generated byCarthorhyncus,Utatsusaurus,Mixosaurus,Guizhouichthyosaurus, andOphthalmosaurustail fins in a flow tank. Experimental results suggest that the pitch torque on the torso generated by hypocercal fin shapes such as found in model systems ofGuizhouichthyosaurus,MixosaurusandUtatsusaurusproduce distinct ventral body pitch effects able to mitigate the animal's non-neutral buoyancy. This body pitch control effect is particularly pronounced inGuizhouichthyosaurus, which results suggest would have been able to generate high ventral pitch torque on the torso to compensate for its positive buoyancy. By contrast, homocercal fin shapes may not have been conducive for such buoyancy compensation, leaving torso pitch control to pectoral fins, for example. Across the range of the actuation frequencies of the caudal fins tested, resulted in oscillatory modes arising, which in turn can affect the for-aft thrust generated.


Asunto(s)
Aletas de Animales , Modelos Biológicos , Robótica , Natación , Animales , Natación/fisiología , Aletas de Animales/fisiología , Aletas de Animales/anatomía & histología , Robótica/instrumentación , Fenómenos Biomecánicos , Reptiles/fisiología , Reptiles/anatomía & histología , Fósiles , Simulación por Computador , Biomimética/métodos
2.
Integr Comp Biol ; 61(5): 1955-1965, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34415009

RESUMEN

We propose the use of bio-inspired robotics equipped with soft sensor technologies to gain a better understanding of the mechanics and control of animal movement. Soft robotic systems can be used to generate new hypotheses and uncover fundamental principles underlying animal locomotion and sensory capabilities, which could subsequently be validated using living organisms. Physical models increasingly include lateral body movements, notably back and tail bending, which are necessary for horizontal plane undulation in model systems ranging from fish to amphibians and reptiles. We present a comparative study of the use of physical modeling in conjunction with soft robotics and integrated soft and hyperelastic sensors to monitor local pressures, enabling local feedback control, and discuss issues related to understanding the mechanics and control of undulatory locomotion. A parallel approach combining live animal data with biorobotic physical modeling promises to be beneficial for gaining a better understanding of systems in motion.


Asunto(s)
Robótica , Animales , Peces , Locomoción , Modelos Biológicos , Músculos
3.
Integr Comp Biol ; 61(2): 589-602, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930150

RESUMEN

Arboreal mammals navigate a highly three dimensional and discontinuous habitat. Among arboreal mammals, squirrels demonstrate impressive agility. In a recent "viral" YouTube video, unsuspecting squirrels were mechanically catapulted off of a track, inducing an initially uncontrolled rotation of the body. Interestingly, they skillfully stabilized themselves using tail motion, which ultimately allowed the squirrels to land successfully. Here we analyze the mechanism by which the squirrels recover from large body angular rates. We analyzed from the video that squirrels first use their tail to help stabilizing their head to visually fix a landing site. Then the tail starts to rotate to help stabilizing the body, preparing themselves for landing. To analyze further the mechanism of this tail use during mid-air, we built a multibody squirrel model and showed the righting strategy based on body inertia moment changes and active angular momentum transfer between axes. To validate the hypothesized strategy, we made a squirrel-like robot and demonstrated a fall-stabilizing experiment. Our results demonstrate that a squirrel's long tail, despite comprising just 3% of body mass, can inertially stabilize a rapidly rotating body. This research contributes to better understanding the importance of long tails for righting mechanisms in animals living in complex environments such as trees.


Asunto(s)
Robótica , Sciuridae , Cola (estructura animal) , Accidentes por Caídas , Animales , Modelos Biológicos , Árboles
4.
Front Robot AI ; 8: 791722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071335

RESUMEN

Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a thorough examination of the body kinematics, propulsive performance, and muscle activity patterns in fish during undulatory swimming motion has not been conducted. We propose to use soft robotic model animals as experimental platforms to address biomechanics questions and acquire understanding into subcarangiform fish swimming behavior. We extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic actuators and soft strain sensors to investigate swimming performance in undulation frequencies between 0.3 and 0.7 Hz and flow rates ranging from 0 to 20 c m s in a recirculating flow tank. We demonstrate the potential of eutectic gallium-indium (eGaIn) sensors to measure the lateral deflection of a robotic fish in real time, a controller that is able to keep a constant undulatory amplitude in varying flow conditions, as well as using Particle Image Velocimetry (PIV) to characterizing swimming performance across a range of flow speeds and give a qualitative measurement of thrust force exerted by the physical platform without the need of externally attached force sensors. A detailed wake structure was then analyzed with Dynamic Mode Decomposition (DMD) to highlight different wave modes present in the robot's swimming motion and provide insights into the efficiency of the robotic swimmer. In the future, we anticipate 3D-PIV with DMD serving as a global framework for comparing the performance of diverse bio-inspired swimming robots against a variety of swimming animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA